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Abstract

Cell-DEVS is a formalism intended to model cellsgm It describes cellular models using timing gela
constructions, allowing simple definition of compléming. Complex timing models generates million
of messages, big data files and long processing. fithis work shows the quantification mechanisnd an
the analyzed results of the different model quanaifon (with complex functions) in CD++ in ordey t
simplify the models, reducing the quantity of megsagenerated and processing time.

CD++ models were revised, implemented and adapgtexhalyze complex local computation functions
with different quantum types and techniques. Quantstandard, quantum Hysteresis, Dynamic
Quantums, Adaptive Quantization and Generalized¢r®ie Event Simulation models are implemented
and analyzed with three complex models. These tiagtels are: The Heart tissue model, The Watershed
model and The Flow Injection Analysis model.

1 Introduction

Simulation is a powerful tool for analyzing compleystems. The simulation process starts with a
problem to solve or understand from the observatiba real system. Entities are identified, and an
abstract representation, a model, is constructhd.ekecution of the model is done by a simulatdiciv
consists of a computer system that executes thelfsadstructions to generate its behavior. To clatep
the cycle, the results obtained are compared &etlhbthe real system for model validation. Itfigen the
case that a modeler is only interested in a feve@spof the real system. In such a case, an expetain
frame captures the modeler’s objectives and defimescope of the model.

At present exist a quite number of simulation téghes and paradigms. Among these, the DEVS
formalism[1] provides a framework for the construction of hiehical models in a modular manner,
allowing for model reuse and reducing developmigné tand testing. In DEVS a model is specified as a
black box with a state and a duration for thatestéfthen the duration time for the state expireguput
event is sent, an internal transition takes plawtthe model changes its current state. A changtatd
can also occur when an external event is receiMeen, describing the set of states a model goesighr;

the internal and external transition functions, dlput function and the state duration functiofirdea
complete model. DEVS models can be put togethdinjng the outputs of a model to inputs of other
models to form coupled models. Models made ounbf one component are called atomic.

DEVS not only proposes a framework for model cargton, but also defines an abstract simulation
mechanism that is independent of the model it3difs mechanism is high-level description of how the
simulation of DEVS models should be executed byraulsitor. Two kinds of simulators are defined, one
for atomic and another one for coupled models. &hgmulators progress through the simulation by
exchanging messages as described by an abstratasom mechanism.

Timed Cell-DEVS|2] is a formalism based on DEVS for the simulatiorcefiular models. A cellular
automaton is a lattice of cells, each of which &daslue and a local rule that defines how to obaamew
value based on the current state of the cell aadvétues of neighboring cells. Cells are synchrshou
updated at the same time. Timed Cell-DEVS definesllaas a DEVS model and a cellular automaton as
a coupled model. In Timed Cell-DEVS each cell defiits own update delay.

CD++ is a tool for the simulation of DEVS and CBEVS models which has been used to simulate a
variety of models including: traffic, forest firemnts and physical phenomena. Simple models weily ea
handled by the tool, but the execution of compleodeis results in big data files and high processing
time. That is as a result of the transitions antpuwufunctions exchanging thousands (and millions,
depending on the model) of messages, which is thetive CD++ tool implements the transitions status
and values changes). To minimize the message demefand consequently the processing time and
result data files) a theory of quantized models deasloped4].

When using quantized models, a cell’s state valiliebe only informed to its neighbors if its difience
with the previous value is greater than a givenntwa. This operation reduces substantially the
frequency of message updates, while potentiallyrifieg into error. Different quantum techniques are
implemented and the result of applying these tephes can be different depending on the model
behavior and the quantum value used.
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The aim of this work is to analyze the error, timed number of messages while applying different
quantum techniques to different complex models. R\ipgantifying models, some implementation details
were revised in order to enhance the simulationtaednalysis.

Several quantum mechanisms were implemented, athlyad applied to the three-implemented models
with a local computation function providing highrision and extreme sensitivity to the quantum aise
the simulations. The basic quantums mechanism s/émen the basic concepts of a quantums (that are
used to compare if the new value is on the samenegf the previous) up to different models
implementations techniques that allow internal guzation mechanisms with important message and
time reductions, while incurring into a wide rangg errors (depending on the model, the quantum
technique and the quantum value).

There are quantum techniques implementing dynamiwepts that dynamically adjust the quantum
value of the simulation, depending on the cell galaof the simulation, with the possibility of enbarhe
message reduction and reduce the incurred errorthi@ncase, as the quantum value, a variation rate
(which dynamically modifies the initial quantum ue) can be also specified for the tool.

During this work, new quantum techniques were impated and analyzed, like the Hysteresis Quantum
[20] were the quantum also varies depending on thetidirechanges of the values, in order to penalize
the behavior of oscillating values changes.

Different implementations of the models are presgénand analyzed allowing simulation time and
message reduction with approximation techniquesrfapf quantization techniques), which are also
compared to the quantized models.

We also analyzed GDEVRA4] (Generalized Discrete Event Simulation of Dyna®ystems), which is
an approximation technique that keeps the complefditthe rules defined in each cell to a minimum
expression. Using GDEVS permitted us to improve rifedel precision while incurring in fewer time
steps when compared with the other quantum methbls. use of GDEVS will also improve the
precision obtained if we compare the results obtaiby traditional cellular automaton, due to the
improved precision of model states. We were alde thobtain models that are very simple in terhs o
representation. Explicit timing delay constructigmsrmitted us to define precise timing in each,cell
which is defined by a local computing function caondal with a delay construction.

Another quantum technique was also implementedaaradyzed. It's the Adaptive Quantization (named
Q-DEVS on this work). Adaptive Quantizatigh3] is a technique that allow us to predict the next
transition for a given rule by computing the nexhe a cell will achieve the given quantum value.
Q-DEVS is a Cell-DEVS model that sets the delay aext value of a cell as a result of the anticigate
calculation of the next quantum time. The next quantime is when a region change will occur. TRis i
calculated using the inverse function of the lagadating function of the original model.

The analyzed models with the different quantum sypechniques and values are:

e Heart Tissugl2]: Simulates part of the Heart electrical activity

e Watershed16]: Simulates rain behavior on different zones (lands

e Flow Injection Analysis (FIA]17]: Simulates automated sample analysis of liquidpesn
Different versions of these models were implemersted tested with the different quantum types and
techniques. The results were analyzed consideliagnumber of messages generated by the tool, the
incurred error due to the quantification and thecpssing time.

The implemented models were made using C++ funstémtded to the CD++ tool in order to simplify the
model design. The implementation of these functEmsnew techniques (in CD++) to simplify complex
implementations and work with n-arguments calcatei

Some revisions were made on the CD++ tool to wadperly with the different quantum techniques.
E.g. a new argument was added to avoid the use38fdane. A & plane was previously used to trigger
time-based actions for the first plane.

To make the simulations runs and the results aisalg®veral tools were created. These tools are
command line tools to calculate the error (relatvel absolute) of a quantized simulation, to get th
number of generated messages (by messages ty@eyiafulation, to see the simulation results on a
graphical way and automatically (and massively)and compare n-simulations.
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This work present and analyze the mentioned quartechniques with the three complex models
introduced before.

2 Background

2.1 The DEVS formalism

Systems whose variables are discrete and the tilvenae is continuous are known as DEDS — Discrete
Events Dynamic Systems, as opposed to CVDS — QanisVariable Dynamic Systerfy.

A simulation mechanism for DEDS systems assumeshkasystem will only change its state at discrete
time points upon the occurrence of an event. Ameigeformally defined as a change of state thiedta
place at specific point of timelil R.

DEVS[1] is a formalism for modeling and simulation of DEBgstems. It defines a way of specifying
systems whose states change upon the reception wipat event or the expiration of a defined time
delay. It also allows hierarchical decompositioritaf model by defining a way to couple existing DEV
models.

The original DEVS model is a structure:

DEVS =< xy Y ] Saaext [} 6int1 )\1 ta>

Where
X is the set of external events
Y is the set of output events
S is the set of sequential states;
Ot QXX S is the external state transition function;
where Q :={(s,e) |8 S, 0<e<ta(s) } and e is the elapsed time since the last $ransition.
Om:S—- S is the internal state transition function;
A:SS Y is the output function;
ta:S- R 0w is the time advance function;

The semantics for this definition are as follows:afy point of time, a DEVS model is in a statg &
and in the absence of external events, it will ienia that state for a period of time as definedtd(gs).
The ta(s) function can take any real value betwkandew. A state for which ta(s) = 0 is called a transient
state. On the other hand, if ta(sperthe system will stay in that state forever unl@asexternal event is
received. In that case, s is called a passive. statmsitions that occur due to the expirationagf} are
called internal transitions. When an internal tiéms takes place, the system outputs the valig, and
changes to stat(s). A state transition can also happen when &l event occurs. In this case, the
new state is given by based on the input value, the current state andl#psed time.

2.2 Cellular Automata

Cellular Automata are used to describe real systeatscan be represented as a cell space. A aedlufa
tomaton is an infinite regular n-dimensional lagtishose cells can take one finite value. The siatédse
lattice are updated according to a local rule ieiraultaneous and synchronous way. The cell states
change in discrete time steps as dictated by d toaasition function using the present cell statel a
finite set of nearby cells (called the neighborhobthe cell — Figure 1).
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Calts Neighbathood

Figure 1 : Sketch of a Cellular Automaton[3]

When cellular automata are used to simulate complestems, large amounts of compute time are
required, and the use of a fixed interval disctete base add restrictions in the precision ofrttoalel.
The Timed Cell-DEVS formalisnfi2] tries to solve these problems by using the DEVEdgigm to
define a cell space where each cell is defined BEYS atomic model. The goal is to build discrete
event cell spaces, improving their definition byking the timing specification more expressive.

2.3 The Timed Cell-DEVS formalism
Cell-DEVS defines cells as DEVS atomic models. A-O&EVS atomic model is defined 42]:

TDC=<X,Y, 1,50, N, d,dn, Oex, T, A\, D>
where

is a set of external input events;

is a set of external output events;
represent the model's modular interface;
is the set of sequential states for the cell;
is the cell state definition;

is the set of states for the input events;

is the delay for the cell;

Oint is the internal transition function;

Oext is the external transition function;

T is the local computation function;

A is the output function; and

D is the state's duration function.

azom— <X

A cell uses a set of input values N to computdltare state, which is obtained by applying thealoc
computation functiort. A delay function is associated with each celffedéng the output of the new
state to the neighbor cells. There are two tygetetays: inertial and transport delays. When adpart
delayed is used, the future value will be added tpueue sorted by output time. Therefore, all jonevi
values that were scheduled for output but that haateyet been sent, will be kept. On the contrary,
inertial delays use a preemptive policy: any prasischeduled output value, unless the same asthe n
computed one, will be deleted and the new onehgilbcheduled. This activation of the local compaitat

is carried by thel, function.

After the basic behavior for a cell is defined, dwmnplete cell space will be constructed by buida
coupled Cell-DEVS model:

GCC =< Xlist, Ylist, I, X, Y, n, {t,....t}, N, C, B, Z, select >

where
Xlist is the input coupling list;
Ylist is the output coupling list;
I represents the definition of the interface the modular
model;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{ty,....4} is the number of cells in each of the dimensio
N is the neighborhood set;
C is the cell space;

Page: 6/ 86



Complex Models Quantification Analysis Leandro San Miguel

B is the set of border cells;
Z is the translation function; and
select is the tie-breaking function for simokaus events.

This specification defines a coupled model compasfeah array of atomic cells. Each cell is connécte
to the cells defined in the neighborhood, but ascill space is finite, either the borders are ipglex) with

a different neighborhood than the rest of the spaceahey are "wrapped"”, meaning that cells in one
border are connected with those in the opposite Birally, the Z function defines the internal and
external coupling of cells in the model. This fuanttranslates the outputs of"moutput port in cell ¢
into values for the fi input port of cell G. Each output port will correspond to one neightod each
input port will be associated with one cell in theerse neighborhood.

Cell's connections

L] B
o3|

m out

III Cell definition
Figure 2 : Informal definition of a Cell-DEVS modd [2]

2.4 Cell-DEVS Quantization Theory

A theory of quantized models was develop&d When using a quantized model, after a cell'ssstalue

will be only informed to its neighbors if its diffence with the previous value is greater than @&miv
quantum. This idea is shown in Figure 3. Heregm@tinuous curve is represented by the crossingsof
equal spaced set of boundaries, separated by #ugqu size. A quantizer checks for boundary crgssin
whenever a change in a model takes place. Onlynsheh a crossing occurs, a new value is sentto th
receiver. This operation reduces substantially fiteguency of message updates, while potentially
incurring into error.

______________________

xxxxx

Figure 3 : Quantization (Zeigler et al 1999)

Large experimental tests were done in order toyaeahe behavior of quantized Cell-DEVS models. The
results showed that quantization reduced bothtataé number of messages sent and the executian tim
but introduced an error. The error obtained israction of the local computing function, the numioér
simulation steps and the quantum. Since the futyret values for a cell depend on the present igsal
nonlinear error may be observed. The error mageitmd depend on the cell's neighborhood size.dsw
shown that as the quantum gets higher, the eatsrlggger.

Choosing an adequate quantum will then dependepricision desired.

When quantization is used with a quantum valué.,;is defined as:

5ext:
Ne = TeorX"):; (s', transport) T(Ny); o#0; e=D@x N x d); phase = active;

s# value(s',d)=
(s=s'00i0[1,m] g Joqueue, ac =g.0-e [0 0 =0 - e; addfqueue, <s',d>)If=s)

Ne = TeorX"):; (s', transport) T(N.); o #0; e=DOxNxd); phase = passive;

sz value(s'\d)= (s=s 0 o=d O phase = actived addpqueue, <s', d>[1f=s)

N = Teor(X®):; (s, inertial) =t(N.); o 20; e =DPx N xd); phase = passive;
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s#value(s'\d)= (s=s' [ phase=activéelo=d 0 f=s)

Ne = Teor(X"); (s', inertial) =t(No); 0#0; e=D@x N xd); phase = active;

s#value(s'\d)= s=s' 0 (f£s' = oqueue={0}0oc=d 0O f=5s)
where

value(v,d) =v' such thaflqON/v' =qg.d OV <v.
i.e. the lowest boundary as defined by the quarsiam

e.g.: value(23.45,0.1) =23.4 value( 550, 106)86

2.5 Quantum hysteresis description

[20] Quantum hysteresis implements a variation thabhgba the quantum value to the double when there
are direction changes on the values.

q{t)
d’_ ..................................

do (1)

Figure H1 - Quantization Function with hysteresis

Figure H1 shows the quantization function with Byssis, where:
Let D ={ d,,..,d.} be a set of real numbers wherg d d
x 0 Q is a continuous trajectory where:
x:R2>R and b:QxR->Q is a maping where g=b(x)tthat satisfies:
(o ift=1ty
aml dua  ifx@®)=duq()=dni<r
i-1 ifx(t) =de”q()=d"i>r
q(t) otherwise

and
0 if X(to)<do
m r if X(to)>d;
j if dj<: X(t0)<dj+1

The map b is the quantization function with HyssiseThe hysteresis width is E and the paramet&rs d
and dr and the lower and upper saturation valigeshawn in Figure H1.

On this work the hysteresis width was set equ#tiéoquantum size, because of conclusions madein th
analysis of the different possibiliti¢20].

This means that if a value change his directiorn wéispect to the Last Threshold Value, the nextesal
will have to change two regions to be transmitt€tis quantum must be combined with standard
quantum and can be combined with dynamic quantam to

When using quantum hysteresis, a value is transanitepending of this rule:
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Let:

g = specified quantum

d = q(t) is the quantum value used in time t
q0)=q

v = Last Threshold Value

V' = new computed value of the local transition
B(t) = direction at time t

A value is transmitted / informed to the neighhbi@irs
B(t) # B(t-1) OregionChange(v, V', g*2) B(t) =B(t-1) OregionChange(v, V', q)

where
regionChange(a, b,q)={agdq=0| ¢ 0O[a/q]#[b/q]}

and the direction at time t is:

B(®) ={ sign(v—-v') }

the direction at time t-1 is:
B(t-1) ={ sign (v(t-1) - Vv'(t-1)) }

2.6 Adaptive Quantization description

Adaptive Quantizatiofil3] is a technique that uses the inverse functiomefldcal computing function

to get the time when the function will change tagion.

For a given function x’ = f(x, neighborhood(x), fjwe find f*/ t = f™* (x, neighborhood(x), q), we can
use this technique to hardly reduce the numbereasfsages of a simulation designing the model to work
setting the delay and the next value with the tesafithe f* function.

Q-DEVS is a Cell-DEVS model that sets the delay aext value of a cell as a result of the anticigate
calculation of the time when a region change wikur using the inverse function of the local upuati
function of the original model.

A typical Q-DEVS rule will be:

{INV(Q, T, x,y,2,....) } { DELAYINV(Q, T, x,y,2,...) } {t}

Where:
INV(Q, T, x,y,2,...) returns the value that the amzald cell will have on the next region
change with respect to the quantum value Q aftee .
DELAYINV(Q, T, x,y,Z,...) returns the necessary delay the analyzed cell to have the
value that changes its region after time T witlpees to the quantum
value Q.

These are theoretical functions. For the analyzedats on this work, the functions where implemented
using a different technique to return both valuesx{ value and next delay) with only one inverse
function.

2.7 GDEVS description

[14] The definition of cellular models are presentedwhich we are able to define individual cells gsin
Partial Differential Equations (PDEs). We use @#HVS to create cell specifications in which celhsia
small portion of a complex system of PDEs. The asdgers will be able to focus in defining smaller
portions of a problem and in expressing it usimymér differential equations, which can be solvedier
than the complete system. We use GDEVS (Generdisttete Event Simulation of Dynamic Systems)
to keep the complexity of the rules defined in eaefi to a minimum expression. Using GDEVS
permitted us to highly improve the model preciswnile incurring in fewer time steps when compared
with traditional numerical methods. The use of GOEWill also improve the precision obtained if we
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compare the results obtained by traditional CA, tuéhe improved precision of model states. We were
also able to obtain models that are very simpleteirms of representation. Explicit timing delay
constructions permitted us to define precise timimgach cell, which is defined by a local compgtin
function combined with a delay construction.

GDEVS is a formalism for the specification of disier event models of dynamic systems. The originalit
of GDEVS stems from the use of polynomials of adnit degree (as opposed to constant values), to
represent the piecewise input-output trajectorfes discrete event model. In essence, GDEVS caoitessit

a generalization of the classical discrete everdleting approaches including DEVS, in that a claadsic
model may be viewed as a GDEVS model of order 8 {thjectories are represented by polynomial of
order 0). Classical discrete event abstractiordyobmic systems are based on the mapping of piseewi
constant input-output segments of (obtained pertihpsugh threshold sensors) into discrete events.
GDEVS adopted a radically new approach based @wadefinition of the concept of everji8], [19]).

In GDEVS, the target real-world system is modelebuigh piecewise polynomial segments. If we note
that the polynomial coefficients have piecewise stant trajectories we can built an discrete event
abstraction in the coefficient space using the ephof coefficient event. A coefficient event isush
considered as an instantaneous change of, at lmastof the value of the coefficients defining the
piecewise polynomial trajectory of the considereatiable. An event is a list of coefficient values
defining the polynomial that describes the trajpctaf the variable.

We intend to extend the basic behavior providedClell-DEVS atomic models to permit the users to
specify cells with continuous variable behaviorngsihe GDEVS formalism. GEDVS considers the
general case of dynamic systems with piecewiseirnomtis input-output trajectories, and it has solved
how to transform these piecewise continuous trajext into discrete event trajectories. This
transformation was done by achieving a partitionthaf output trajectory into piecewise polynomial
segments. To each of these output segments comgsocontinuous segment of the state trajectaly an
piecewise constant segments in the space of polgh@oefficients. In a GDEVS model an event is an
instantaneous change in at least one of the valfitise coefficients of the polynomial describing th
signal.

For example, let us consider a piecewise linegedtary w<t0;tn>->A as a trajectory on a continuous
time base, characterized as follows: there is itefget of instant$ty, t;, ... ,t,} associated with constant
pairs (& b) such thatdt O <i; t>, w(t) = at + b, and w<§; t> = w<ig;t;>* w<ty;t,>* ... W<ty.q;ty>
(where * represents the operator left concatenaif@egments). This is exemplified in Figure 30jckh
describes the use of piecewise linear approximstiminthe continuous segment in Figure 30a, while
Figure 30c represents a 1-order discrete eventaaitisin under GDEVS with coefficient events.

Continuous worl
A Vout

Threshold

Threshold |

>

A Vout
pi

ecewise linear siar

v

Events of
> Order oni

>

©

Figure 30. GDEVS approximation of a continuous sigal
(a) continuous segment (b) piecewise linear segmdi) 1st order model.

The behavior of each cell in a Cell-DEVS model wiliw be described using GDEVS. Before applying
this new proposal, Cell-DEVS state variables alyepérmitted using continuous values. Nevertheless,
continuous functions definition was, in generalnstoained to defining discrete time versions of the
PDEs (Partial Differential Equations) running inckaof the cells. This desvirtuated two of the main
advantages of using Cell-DEVS: advancing model ettec using discrete events, specifying cellular
models as a composite of cells described with gample rules. In certain cases, we were able tories
continuous functions using ad-hoc simple rules, oot researchers would prefer defining the cell's
behavior using PDEs (Partial Differential Equatipmreghich would result in performance degradatiore W
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will show how now Cell-DEVS models can overcomesth@roblems. The idea is that a continuous local

computing functiomt will be approximated by piecewise polynomial signaf the desired precision,
providing means for improved performance while hgvsimpler rules for model definition (hamely,
concatenation of polynomials).

//_/ Continuous function
/_// GDEVS approximation
e
N .

\ .
. e

i

Figure 31. GDEVS approximation of Cell-DEVS local omputing functions.

The ideal case in terms of performance is whemeal approximation is able to provide high precisio
and bounded error, as linear models have low doskecution and easy definition. Higher precisiam c
be achieved by using higher order polynomials, pgyihe cost of execution time and increased

complexity of the rules defined. Defining GDEVS netsl using polynomials of order O result in
automatic definition of traditional CA.

2.8 CD++

CD++ implements the DEVS theory. It allows definimgodels according to the original DEVS
formalism (Wainer 2000-Rodriguez and Wainer 19993et of independent applications related with the
tool allows the user to have a complete toolkibéocapplied in the development of simulation models.

The tool is built as a hierarchy of classes, eddihem related with a simulation entity. Atomic nedsl
can be programmed and incorporated into a basss ¢leerarchy programmed in C++. Coupled and Cell-
DEVS models need not be programmed. The tool pesvid specification language that defines the
model's coupling, including the initial values agxternal events, and the local transition rulesCfell-
DEVS models.

EL

I

Figure 4 : CD++ Models and Processors.

This class hierarchy implements the model theaaktefinition presented in the previous sectionwNe
atomic models must be incorporated to the clasmttRy as subclasses of the Atomic Model class.

Coupled models are defined using a specializedifsgggion language. Following, we explain how to
incorporate atomic and coupled models to be siradlat

A new atomic model is created by including a newasslthat inherits from Atomic. In doing so, the
following methods may be overloaded:

* initFunction: this method is invoked when the siatign starts. It allows to define initial values
and to execute any initialization procedure for thedel. When this method is executed, the
value of sigma next scheduled event) is set tmitefiand the model phase to passive. The sigma
variable is used to implement the duration functibstores the time up to the next event in the
model. This variable is related with the elapsauetivalue, which is maintained by an
independent simulation mechanism.

« externalFunction: this method is invoked when atemsal event arrives from an input port. If
the new CD++ argument “-c” is indicated, an additibexternal event is generated when no
events are generated on a time for a cell, to Keepmodel simulating until the ending time.

« internalFunction: this method is started when thkie of sigma is zero, since an internal event
has occurred.

e outputFunction: this method executes before thermal function, allowing to provide outputs
for the model. After defining these functions, neadels can be incorporated to the modeling
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class hierarchy. Finally, the model must be registe using the method
MainSimulator.registerNewAtomics().

The following primitives can be used in defining titomic’s model behavior:

< holdIn(state, time): a model executing this sergewdl remain in state during time. When the
time is consumed (sigma = 0), the model executesitternal transition. This macro was
included to make easy the definition of the durafienction.

e passivate(): the model enters in passive mode €phgsassive; sigma = infinite) and it will be
reactivated by an external event.

« sendOutput(time, port, value): it sends an outpegsage through the given port.

« state(): it returns the present model phase.

CD++ Quantization implementation

In CD++ there are implemented two main quantum gypehich can be combined to obtain different
quantification results. The quantum types are Stehhdquantum and Dynamic quantum. These
mechanisms were modified in order to solve somailsition problems with quantization and reduce the
error while using a quantum.
The solved problems were three:

The updating of the local value of a cell whendmantum is not achieved.

A way of storing the last value a cell had befohanging its region.

The comparison of the values considering the pi@tiindicated on CD++.
The idea of a threshold value was implemented deesthe last value a cell had before its last mregio
changed, to be compared with the new value. THisevia called Last Threshold Value.
The region is calculated as follows:

v = computed value
d = quantum value

Region:
Ifd#0= Region=[vHd]
Ifd =0= Region=v
Where “[ x ] is the integer part (without decimadlues) of the x value.
When a value is on the same region of the LastSHuld Value, the new value is not queued (or
transmitted) and the neighbors of the computedwefi’t receive this information but the local valog
the cell it is internally updated for next compigat

With these changes, the Last Threshold Value it stored and.,; work as follows:

aext:
N = Teor(X®):; (s, transport) F(No); o#0; a=¢ e =DOxN xd); phase = active;

regionChangey, s',d) =
(a=s" Oa=s'0 0i0O[1,m] g Doqueue, ac =g.0-e 0 0 =0 -e; addfqueue, <s',d>)If=a)

N = Teor(X®):; (s, transport) =(No); o #0; e=D@xNxd); phase = passive;

regionChangey(, s',d) = (@ =s" 0O o=d 0O phase = activell addpqueue, <s', d>[1f=a)

Ne = TeorX"):; (s, inertial) =t(Ny); 0 #0; e =D@x N xd); phase = passive;

regionChange(, s’,\d) = (@ =s' O phase=activelo=d U f=a)

N¢ = rcon(xb); (s', inertial) =t(N); 0#0; e=D@x N xd); phase = active;
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regionChange(, s’\d) => a=s" 0 (f£s' = oqueue={0}0oc=d 0 f=q)

- regionChangey, s’,d) =
(0Di0O[1,m] a Ooqueue,pc=g.0-eJo=0-¢e; 0f=g")
where
regionChange(a, b,q)={agdq=0| ¢ 0O[a/q]#[b/q]}
e.g..
regionChange (22.0, 23.45, 0.1) = true regionCbdfg.49, 23.45, 0.1) = false

Standard CD++ Quantization

The standard quantum works with a quantum valuéghwis used to compare the new value with respect
to the last value that achieved the quantum (caddlsdthreshold value) and determine if the neweas

on the same quantum region of the last one. Ifithike situation (the new value is on the sam@negf

the last threshold value) the new value is notdmaitted (informed) to the affected neighbors of the
analyzed cell with the message savings that thidiés When a new value is on a different regioith(w
respect to the quantum value and the last thresralie), the new value is transmitted (informedjhe
affected neighbors and this value will be the nast threshold value for future region comparisams (
this case, there are no message savings).

Dynamic CD++ Quantization

Dynamic quantum is a variant that changes the otigqeantum value on a specific ratio. The quantum
used at time t can be different of the quantum aseaine t” for the same simulation.

The ratio is applied to the original quantum vaN#th the ratio, the quantum will change on thegeq

* (1 —ratio) and q * (1 + ratio).

Dynamic quantum must be combined with standard tguaand with one of its two strategies:

Strategy 1: With this strategy, q * (1 - ratioJused when the new value is on the same regioneof dist
Threshold Value and q * (1 + ratio) is used whee ttew value is on a different region of the Last
Threshold Value.

Strategy 2: is the opposite of Strategy 1. It us€1y- ratio) when values are on a different regénd q *

(1 + ratio) when they are on the same region.

Let g be the specified quantum and r the ratio.
d = q(t) is the quantum value used in time t.

v = Last Threshold Value

V' = new computed value of the local transition

q(0) = g for both strategies.

Strategy 1
= regionChange(v, v', & d = q * (1 - ratio);
regionChange(v, v, &» d = q * (1 + ratio);
Strategy 2
regionChange(v, v, &> d = q * (1 - ratio);
= regionChange(v, v', & d = q * (1 + ratio);
where

regionChange(a, b,q)=( apdq=0| (00[a/qlz[b/q]) )

3 CD++ Modifications

Some changes on CD++ tool were needed to makeutir@tigation analysis made on this work.

The first change was the change to store the Lhstshold Value and to update the current cell value
also when no region change is given while usingigua.

Previous to this work, when a quantum value wass@, the error was very high with small quantum
values (specially on models using the current ealle to calculate the next value, that is, when th

current value is an input of the local computafionction). A problem detected was that CD++ was not
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updating the current cell value when the new vdida't changed its region with respect to the {adtie.
When this occurred, the error was to big becaudacittased the difference with the original value
because the local computation function used theiquie value to calculate the new cell value and tha
previous value was not updated since the last negfiange.

A possible solution was to store internally thet lealculated value for the analyzed cell, but than't
solve all the problems with all the models, so #&diesolution was implemented: When a value didn't
pass the region of the last value, the currentevafua cell is updated locally, without sending saggs

to its neighbors. At this way, in spite of not girguand sending the new value who didn’t passed the
quantum, the current cell updated its value intéyrend no new events were generated or scheduled.
Because of this change, a new consideration to keepnd, was that the value of the cell is now ajw
updated (passing or not the quantum) so it's noees®ary to know which was the last value passed a
guantum or changed the region (because the curedintalue is not, it's updated always) and thduga
(the last passed a quantum / changed the regiaheisalue to compare with the new value with the
quantum. This was the reason because the Lasthdide¥alue was added to the tool and after this
change, the incurred error while quantifying wadueed significantly and the quantum analysis could
take place.

Another change made to the tool was the quantunpadson function. When quantum was in use, some
values which it suppose that will pass the quantwon’t. The reason was that the comparison function
was not using the “tolerance” argument of the tad this implied that comparisons fails more than t
expected because of precision problems. A new casgrafunction was implemented which uses the
simulation specified precision (tolerance) on tbel to compare the values. With this implementation
the precision for quantum region comparisons caméeaged with the tool arguments.

After this changes, when using dynamic quantumgetier and the results were very high comparing the
dynamic quantum with non dynamic quantum. A new ification was needed on CD++ in order to
solve this problem. The dynamic quantum was upddtie quantum value with the specified ratio value
on the last updated quantum, not on the originahtium. A modification to use the original quantum t
apply the ration value to update the quantum wasdaoced and dynamic quantum could be analyzed
correctly.

Another issue when using dynamic quantum was whemtifying one plane, the dynamic quantum
value was updated also with the non quantifiedaldm solve this, updating logic of dynamic quantum
was modified so when other plane than the seleftteduantifying is evaluated, the dynamic quantum
does not update the quantum value in order to ddieturb the quantum with this plane who was not
selected for quantification. Similar problems ocedrwith quantum Hysteresis combined with dynamic
guantum: the hysteresis quantification consideffergint quantum conditions depending on the dioecti
changes of the values. The dynamic quantum updéatudgto follow the same rules: if a value does not
achieve the double quantum because direction clatogd place, the dynamic quantum updating rule
has to be done in accordance with the dynamic atdnguantum when it doesn’t achieved the quantum
(in spite of a double quantum). With this chandesteresis with dynamic quantums were synchronized
in order to work properly.

Some other changes in order to enhance the showcedadidation of the arguments during a simulation
were made. Selected quantum information and theiffeof quantums (like the selected plane for
quantifying ) were added. Also quantum validatiomsre added, e.g., if dynamic quantum is needed,
type, value and ratio has to be specified, becalmn using dynamic quantum is not enough to indicat
the arguments of dynamic quantum, also the quarnyp® and value are needed to be combined (e.g.
Standard or Hysteresis values).

New Quantum hysteresis Argument

A new argument was added to support this technifbe.argument is —Q for quantum hysteresis while —
g is used for standard quantum. These argumentsbeacombined with the arguments of dynamic
quantum, which are: -y for strategy 1 and -Y foatstgy 2.
e.g.:
A valid argument usage can be:
-Q1.5-y0.5

which means using quantum hysteresis 1.5 and dynaguantum strategy 1 with
dynamic ratio 50%.
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With this argument, when the direction changesedion is the sign of {newValue-oldValue}), the
newValue will have to achieve the double quantutis Behavior will occur when the new argument “Q”
(similar to “g” of standard quantum) is indicatebo support this mechanism, CD++ changes were
implemented in some simulator classes.

This is the behavior of quantum hysteresis:

1. If lastThresholdValue is undefined, it means tlsathie first comparison and lastThresholdValue
has to be initialized with the current value of tte#l and the direction of the cell will be thersig
of the difference with the initial value of the kahd this new value (0 at the beginning).

2. Comparing the current (stored) direction of the ealues with the new direction, if the direction
is the same and the absolute value of the differ&etween the lastThresholdValue and this new
value with respect to the quantum is differentfTasesholdValue is updated with this new
value, the new direction between this value andctimeent value is updated and the value is
scheduled (queued in case of transport delay).

3. If the direction is the same and the absolute vabfethe difference between the
lastThresholdValue and this new value with respethe quantum is equal, lastThresholdValue
and the direction are not updated and no valuehisduled (or queued) but the local cell value is
internally updated with the new value ins spit@of achieved the quantum.

4. If the direction is different and the absolute alwf the difference between the
lastThresholdValue and this new value with respethe double of the quantum (2*quantum) is
equal, lastThresholdValue and the direction areupdiated, neither a new value is scheduled but
the local cell value is internally updated with thew value in spite of not achieved the double
required quantum.

5. If the direction is different and the absolute ‘alwf the difference between the
lastThresholdValue and this new value with respethe double of the quantum (2*quantum) is
different, lastThresholdValue and the direction apelated and the new value is scheduled (or
queued in case of transport delay cell).

The steps showed above are a description of theregss implementation in CD++.

New Quantum slide selection Argument

A problem solved here was the selection of theedlidquantify.
On a Cell-DEVS model, it is possible to have 3-disiens or n-dimensions for a model.
e.g.:

to quantify the original model of Watershed,"amane was necessary to maintain the cells with
activity, because if no queued values were avalédl a cell, the cell will be inactivated and @ avents
are available for none of the cells, the simulatiglhstop as a result of no events generation.

To bypass this problem and analyze the quantizato3® plane was added to keep the model
with events. The next rules are an example of taetimned %' plane rules:

Rule:{1}d{(0,00=0andPlane =2}

Rule:{0}d{(0,00=1andPlane=2}
With these, we saw that for some models, coulddoessary to quantify only some planes (or some)cell
of the model and not every cell and every planeyisio a new argument, we can now specify whichscell
or planes to quantify, as follows:

-i(X:n*, X:n*,....X:n*)

where —i indicates CD++ that not every cell or pléuas to be quantified, X (“S”, “N”), n O N,
X ="S” indicates that this plane must be quanifie
X =*“N" indicate that this plane mustn’t be quaigd:.
n indicates that only thé"mlane has to be quantified or not quantified &peinds on the X value, if it's S
means quantify, N means not quantify) and the ematiom of n is optional to indicate specific
dimensions cells.
e.g.:
-i(S,S,N:1) means that every cell will be quantifiexcept cells on plane 0 of last dimension.
Cells of form (*,*,1) wont be quantified. Any othges.

-i(S,S,S:0) means that every cell of form (*,*@)l be quantified. Any other no.

-i(S,S,S:0,2) means that every cell of form (*)*a0 (*,*,2) will be quantified. Any other no.
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This is useful to quantify models containing rulescells or planes that we don’t want to quantify.
New Discrete advance time simulation Argument

With a new argument (-c), we can indicate CD++ ttlas simulation will force the continuity of
simulations also when no more events are giveheifending time was not achieved. The simulatioh wil
end only when simulation time achieves the endimg indicated for the simulation.

This argument receives also the interval of timeduto discretize the simulation when no events are
given for a cell.

The format of the argument ise-wheree is the time interval.

e.g.:
-c00:00:00:200 means that the simulation will awm on a cell with no events every 200ms.

When no events are generated at a time t for a@BH-+ will generate an external event i time.
Drawer (drawlog) changes

As in the simulation, drawlog tool (used to getaarput file with the values of each cell from tlog lof
the simulation) uses an argument to extract ordyotlitput corresponding to an specific plane.

Drawlog already has an argument —f to indicate, thigt this argument keeps out all the format
information (tittes and timeline) and these argumentputs values on every time the simulation
generates an output, without filtering if the outfufor the selected plane or not. This was uskfuthe
graflog tool, which needs no lines and time formate/ork.

With the “—e” new argument drawlog now can geneaatermatted output for the selected plane and only
when the selected plane has values, ignoring thestioutputs of others planes and keeping on thks,tit
time and cell numbers headings.

This is useful for a new graphic tool that showgaphic of the local function of each cell on d splace
grid indicating the time and cell on the graphic.

Also to get the error comparison of simulation® time is needed to compare correctly the values of
each time.

In drawlog, an “-i” argument was added which indésathe number of milliseconds to show the output.
This is used to analyze large simulations, withy\@g output files, because it allow “jumping” mages

in between.

4  Heart Model Description and Implementations

Description

[7] The heart is a muscle responsible for pumpingladd into the circulatory system. Behavior of the
phenomena occurring in the heart muscle and tisaadeen extensively studied and it has been export
in a wide variety of medical treaties (see, fortanse[5], [6]). In these documents, heart activity is
usually analyzed according to three kinds of atiisi mechanical, electrical and cellular.

In terms of mechanical activities, the blood retutn the heart through the vena cava superior and
inferior, and flows to the right atria. The bloddws to the right ventricle, where it is pumpedthe
lungs to return oxygenated to the left atria. Thiénflows to the left ventricle, which returns the
oxygenated blood to the body through the aortas hpresented in the following Figure 5.

Figure 5. Basic aﬁazbmy of the heart.

Mechanical activity is triggered by the electriealivity of the cells. The heart muscle is excigatdnd
the cells in its tissue respond to external stirbylicontracting the muscular cells. If the stimuilsisoo
weak, the muscle does not respond; instead, Wahage received is adequate, they contract at maxi
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capacity. The electrical conduction system of tlearhis responsible for the control of its regular
pumping. This activity is originated in the Sinoiatr(SA) node, also known as the pacemaker. Thigis
electrically active region of the heart that seffieates automatically. Cells in the heart tisste excited
when adjacent cells are charged positively. In t@ste, an upstroke of its action potential is pkedy
which will spread to nearby cells.

All excitable tissue, once activated, exhibits &aetory period before returning to rest. During th
contraction period, the muscle is absolutely rafmc and do not respond to external stimuli. Befor
starting a new contraction, the previous one shbalee finished, and shortly after the contractitbe,
muscle is relatively refractory. In this case, migm stimuli do not generate response, but a stronge
stimulus is able to generate a response. The ielglctctivity is started in the SA node, and itesuds
through the atria muscle at a speed of 1 m/s (fmndn beings 80 ms are needed to activate the.atria)
After, the electrical activity is spread to the Adde, where it propagates slowly (0.1 m/s), and,thee
excitation travels at 2 m/s through the Purkinipefi

This electrical activity is originated by the céddluactivities, which consists on the interchanf@®ns of
Potassium and Sodium in the walls of the cellssThiemical reaction produces potential differerafes
mV, which trigger the electrical activity. Hodgkand Huxley originally characterized this behaviér o
cell membrane activity i8], a foundational article that presented the detallehavior of the inter-
membrane action potential function. They recognidiffidrent phases in this function:

a. The heart tissue is relaxed, the interior of thenmene is electrically negative with relation te th
surface, with a difference of potential of 50 mV

b. The surface membrane is repolarized, creating ttmeg with a potential difference.

c. Electrical activity starts, and the external suefd@came negative, with a potential difference ®f 3
mV. This phase is called excitation (or depolaitat

d. Finally, negative voltage in the surface trespaisesnembrane, and the original status is recovered
This phase is called repolarization.

The Hodgkin-Huxley model showed that virtually mémbrane current models can be defined by writing
the total membrane current, which is a sum of titdvidual currents carried by different ions thrbug
specific channels in the cell's membrane. The &atiom is based on Sodium ion flow, Potassium ion
flow, and the leakage ion flow. This behavior candefined as:

I=m’h Gua (E - Bul) + Gk (E- B) + G (E— E) @

| is the total ionic current across the membrane;

m is the probability that one particle contributedactivate of the Sodium gate;

h is the probability that one inactivation partibkes not caused the Sodium gate to close;

Gna is the maximum Sodium conductance;

E is the total membrane potential;

Ena is the Sodium membrane potential;

n is the probability that 1 of 4 particles influedcthe Potassium gate;

Gk is the maximum possible Potassium conductance;

Ex is the Potassium membrane potential;

G, is the maximum Leakage conductance; and

E, is the leakage membrane potential.

Hodgkin and Huxley computed empirical formulas floee Sodium gate activation (m), Sodium particle
activation probability (h), and Potassium gatewvation probability (n). They also found the valwéghe
remaining parameters of equation (1), which whérews to be constant. By applying the Hodgkin-
Huxley equations, we can obtain the action potefdizction for the cells in different regions ofetiheart
tissue. The behavior of different cells can berdafiby variation in conductivity, length of thedils, etc.
They also showed that the results of this equatienequivalent to the results found in experimeaiddh.
The following Figure 6 shows the results obtaineldem using the Hodgkin-Huxley equations using
parameters corresponding to cells of the atria.Wileuse this equations in following sections toildu
the Cell-DEVS model of the hear tissue, and to nihkequantization analysis.

Figure 6. Action potential in the atria cells usingHodgkin-Huxley equations.
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CD++ Implementations

The Hodgkin-Huxley model has been extensively usedifferent studies, as it has been shown that it
reproduces with fidelity the electrical propertinsthe myocardium cells. Nevertheless, whereasirsplv
this equation using numerical methods for one telfeasible, the use of this model in a realistic
reproduction of the heart tissue (probably consistof millions of cells) can be computationally
expensive. Consequently, different authors trieditaplify the complexity of the equations, and vas
studies tried to solve this problem using CA (deejnstance[9], [10], [11]). Most of these models are
based on simple CA for excitable media, which disze the Hodgkin-Huxley results.

In [10], we used Cell-DEVS to build a discrete variabledeioof heart tissue conduction. In this model
(which uses a similar approach than other modeils tsing CA), we recognized three states for & cel
resting, excited or recovering. We defined this eloeh the CD++ toolkit, and Figure 7 includes a
complete specification of it.

[Heart]

type : cell

dim : (5,5)

delay : transport

border : nowrapped

neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Heart-rules

[Heart-rules]

rule : 2 0.48 {(0,0)=0 and statecount(2)>0 }
rule : 1 1.48 {(0,00=2}

rule: 0 175 {(,0)=1}

rule : {(0,0) } 0 {t}

Figure 7. Cell-DEVS Definition of a simple heart tssue model.

Model definition begins by defining the Cell-DEVS®upled model and its parameters: size (5x5 cells),
neighborhood shape (all of the adjacent cells)l kihdelay (transport, as we want every state chdog
be transmitted without preemption), and borderss (th a non-wrapped model, and special rules were
defined for the borders). The heart-rules sectaprasents the local computing function for the rhode
Here, the first rule represents the initiation tEfcérical activity in a resting cell (with value.On that
case, we check to see if any of the neighborsdgesk (value 2). In that case, the cell is excitgédcond
and third rules define the cells changing to theovering and resting states. The last rule stdassin
every other case (t means "True"), the cell ketppriesent state. Figure 8 shows the results aatain
when this model executes. It shows the evolutiothisfconsidering a pacemaker cell in (0,0).

Figure 8. Heart tissue model execution.

As we can see, the model represents the tissuenaasing very simple rules, which has several
advantages. Cell behavior is defined using simypliesy which makes it easy to modify the existingdelo

to experiment different conditions. We also see tleday functions are associated to each of thesrul
representing each state cell. When describingrttidel using CA, timing definition is more complex,
and it can result in extensive simulation time ¢hiave the desired precision. Likewise, any chariges
the delay functions can result in complex changeshe CA definitions. Instead, Cell-DEVS timing
delays can provide complex timing description usings that are straightforward to define. Foranseg,
this model represents three different delays démtint scales. In order to achieve such precisioGA

we should choose the smallest timeslot for simudatime advance. Instead, in Cell-DEVS each rule is
triggered by an event that is executed asynchrdpaugach of the cells at randomly chosen instants

Although representing this problem as CA permiteoiucing simple rules, it poses a problem in misdel
precision. As we can see, we have discretizeddhé&raious function showed in Figure 6 with onlyethr
different discrete states. This could seriouslgétfia the execution results of the model if we pdeid
introduce modifications to the cell's standard léra For instance, arrhythmias modify the action
potential in isolated groups of cells, modifyingetehape of the action potential curve, which could
require defining a completely erratic behavior #ogroup of cells, which could affect the adjacesitsc
under different circumstances. Another example idems analysis of the cell's behavior during the
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refractory period: if enough voltage is received amwell, the cell is excited, but if the voltagenist
enough, it will ignore the stimuli. Representingsthehavior with CA is very difficult; instead, & PDE
(Partial Differential Equations) is included on kaell, it will be able to adequately react to epolsible
modification of the parameters.

As a result, we decided to implement this modeCa#i-DEVS running the Hodgkin-Huxley model in
each of the cells. We implemented a model of thitoAdPotential function for the cells in the heaiitia
[12]. This Cell-DEVS model simulates the electrical dabr of the cells, following the Hodgkin-Huxley
model, as described in section 3, discretizingtithe in each of the cells under execution. Theofeihg
Figure shows the model definition using CD++.

[heart]

type : cell

dim: (5,5,2)

delay : transport

border : nowrapped

neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)
neighbors : (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,-1,0) (1,0,0) (1,1,0) (0,0,1)
localtransition : heart-rule-AP

[heart-rule-AP]
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 and (

(-1,0,0)>0o0r (0,-1,0) > 0 or (-1,-1, 0)>0) and (0,0,0) = -83.0) }
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 }
rule : {if( (0,0,0) = 1.0 or (0,0,0) = -83.0, 0.0, 1.0) } 1 { cellpos(2)=1}

Figure 9.Cell-DEVS definition of the action potental function for a heart tissue mode[12].

We first define the size of the cell space, whichthis case, a 3D model with 5x5x2 cells. This elod
uses a transport delay, and it is non-wrapped @fme specialized behavior for the cells in thedao).
The following lines in the specification define theighborhood shape (in this case, all the adjaneligt

in plane 0, and the upper cell, which will be usedefine if the current cell should be computechat).
Then, we define the local computing function, aalteart-rule-AP. The function is defined by twoesll
The first one will be evaluated only by the celishe first plane in the model (cellpos(2)=0), amdly if
the cell is resting and a positive voltage is deiddn the cell's neighborhood. This rule will tay the
update of the cell state using the Hodgkin-Huxlguations presented in Section 3. The second rule wi
be used in the subsequent activations. The thiedisievaluated only by second plane (cellpos(2)atjl

it is used to trigger time-based actions for thstfplane. This plane is just changing its stadenfO to 1
and vice versa in each timestamp, triggering thexetion of the rules of the action potential fuantin
plane 0. This is needed because Cell-DEVS onlyidersactivation of a cell under asynchronous esjent
and, if no event is created, the cell goes to agpgint state, which is avoided by this rule.

(a) (b)
Figure 10. Model execution using Hodgkin-Huxley ecations (a) individual cell (b) cell space

The AP function in this model receives the coortéraof the current cell and its current state. fsin
these values, it recovers the previous state ofctireent cell, and computes the next voltage using
equation(1). Figure 10 shows the execution results of this @hofls we can see, the results obtained are
the same we obtained earlier by solving analytdélé Hodgkin-Huxley (in fact, most of the sourasle
originally developed to build the AP function wasised in this Cell-DEVS model).

As we can see, this model improves precision oker @A, thus, we are able to define advance cell
behavior easily. For instance, by activating the fARction with different parameters in differentlse

we are able to reproduce the activity in sick céike those with arrhythmias, fibrillation or coactivity
problems). Nevertheless, this model is very expenisi terms of computing resources.

Page: 19/ 86



Complex Models Quantification Analysis Leandro San Miguel

To analyze the different techniques of quantum (amechanisms), three quantum variants where
implemented:

The standard quantum (as showed before).

The Q-DEVS quantum (for Adaptive Quantization).

The GDEVS models.
Here are the details of those implementations:

New CD++ Implementation

The implementations were made using a functiontewriin C++ inside the source code of CD++ tool
(the AP function).

This code makes easier the implementation of thi&l lof models within complex functions. The
behavior of the neighborhood is described on the-€Bodel using the implemented function in it. To
analyze correctly the model with the different quam mechanisms, the model was simplified reducing
the neighborhood rules to the minimum (one rule) awoiding the neighbor restrictions present on the
original model for cell activation (the restrictiovas the comparison of some neighbors values \ith z
value, to verify if the neighbors has positive egative values). With this simplification it's pdss to
compare the simulations correctly, with the différguantum types and techniques.

Above we can see the model implementation, whichtbabe run with a new CD++ argument which
indicates the tool that discrete time is in usetarvals of x ms (5 ms in this case). With thiguanent, if

on a period no events are generated for a cellsitmeilation will go on with an external transition
generated by an external message to the cellsbgehe cell with no events itself. This is usdfulavoid
having the % plane used before, which disturbs the message axisop and simulation time on the
analysis.

Implementing this changes, we have"ar@odel with less complexity of rules:

%modelo del Corazon
O ——

%Ejecutar con parametros -c00:00:00:005 (discrete t ime tik 5ms)
O ——

1 [top]

2 components : corazon

3 [corazon]

4 type:cell

5 dim:(5,5)

6  delay : transport
7  defaultDelayTime :5
8  border : nowrapped
9

neighbors : corazon(-1,-1) corazon(-1,0) corazon(- 1,1)
10 neighbors : corazon(0,-1) corazon(0,0) corazon(0 1)
11 neighbors : corazon(1,-1) corazon(1,0) corazon(l 1)

12 initialvalue : -85.0
13 initialCellsValue : corazon.val
14 localtransition : corazon-rule

15 [corazon-rule]

%Como parametro recibe el voltaje actual de la celd a 'y un indicador de si alguna de las
celdas vecinas
%tiene corriente positiva cuando esta celda esta en reposo.

%EIl ultimo valor sumado es la demora utilizada.

16 rule : { APA(cellpos(0)*10000000+cellpos(1)*100000+ 0*10000+0.025,(0,0)) } 5 { t}

OnLines 1 and 2the unique Cell-DEVS model corazon is defined.

Online 3 the model description begins.

Line 4 indicates CD++ that is a cellular model.

Line 5 is the defined dimension of the cellular spacethis case, we have a space of 5x5x1 cells (on
previous models, a 3 dimensional space of 5x5x2neasled to keep alive the model wile quantifying).
Line 6 defines the delay type of the model for each @edkue). In this case, the delay type used is
transport.

Line 7 defines default delay, 5 milliseconds in this maat®l it's the same delay for every cell (thisdd n
necessary true on the real model, but is suffidiemhake the simulation analysis needed for quantum
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Line 8 defines the border type for the model, which isamapped, which means that the border cells are
not connected with the opposite border (as is beaat tissue space).

Lines 9 to 11defines the relative positions of the neighborscWiare all the adjacent cells including the
analyzed cell.

Line 12 defines the default value for every cell, which-85.0 for all the cells because we are analyzing
the model as a uniform space, which is necessargrngpare with other quantum types.

Line 13indicates the file with the initial values for eaa#il, which in this case is the same (—85.0) ibut
other models tested at the beginning was differemhdicate the pacemaker cell, as in the hearichvh
has a pacemaker fiber which initiates the actioteqital of the heart, but now, we are not using a
pacemaker in order to keep a uniform simulatiorefbthe cells.

Line 14 is the name of the section with the behavior rideshe cellular model.

Line 15is beginning of the rules description section.

Line 16 is the first rule (and the unique in this casd)isTrule defines the local updating function ofleac
cell, which represents each tissue of the heart.

On previous models, an additional rule was usddetp alive the model wile using quantum, but here i
no more needed.

The APA function used on line 16 has 5 argumenit first four arguments are composed because of a
limitation of the used version of CD++.

On this implementation, the initial values for thie cells are —85.0 in order to have the same leham
all the cells and avoid comparison problems (comipiewith others techniques.

The APA function returns the current value of tpedfied cell considering a factor (0.025 in thise)
used with the Hodgkin-Huxley differential equatiofiis factor is needed to indicate the relatiothwi
the delay time of the CD++ rule (because the mimmtime that we can indicate on a CD++ rule is 1 ms
and this function need less than 1 ms. This isanpt two paragraphs above).

To identify the tissue and use the internal valagshe function, the x-y position of the cell (whic
represents the tissue of the heart in the DEVS hadimdicated to the function as arguments.

These five arguments are packed as follows:

Argument 1 = coor(x) * 10000000 + coor(y) * 100000 + Neighbactivelndicator * 10000 +
DiscretizationFactor.

The discretization factor (0.025 on this modelysed to indicate function APA the milliseconds used
discretize the values with the differential equasi@f Hodgkin-Huxley formula. The minimum unit time
we can use in CD++ is 1 millisecond and the Hodgtinxley implementation changes the tissue values
every 0.005 milliseconds. This is the reason aeseals needed for the simulation. The scale in side i
CD++ ms = 0.005 Heart ms. All in all, to discretizeery 0.025ms, CD++ uses a rule delay of 5ms .00
*5=0.025ms).

The second arguments it's only the current cell@dloltage) of the tissué&fgument 2)

In the APA function (implemented in CD++) theselwargnts are unpacked.

An example of the cells voltages values generayea $imulation without quantum is showed above.

Line : 83 - Time: 00:00:00:000

0 1 2 3 4
o +
0| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
1| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
2| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
3] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
4| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
s — +

Line : 212 - Time: 00:00:00:005

o +
0] -81.59893 -81.59893 -81.59893 -81.598 93 -81.59893|
1| -81.59893 -81.59893 -81.59893 -81.598 93 -81.59893|
2| -81.59893 -81.59893 -81.59893 -81.598 93 -81.59893|
3] -81.59893 -81.59893 -81.59893 -81.598 93 -81.59893|
4| -81.59893 -81.59893 -81.59893 -81.598 93 -81.59893|
e — +

Line : 8984 - Time: 00:00:00:345
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0] -1.00816 -1.00816 -1.00816 -1.008 16 -1.00816|
1| -1.00816 -1.00816 -1.00816 -1.008 16 -1.00816|
2| -1.00816 -1.00816 -1.00816 -1.008 16 -1.00816|
3| -1.00816 -1.00816 -1.00816 -1.008 16 -1.00816|
4| -1.00816 -1.00816 -1.00816 -1.008 16 -1.00816|
S — +
Line : 12467 - Time: 00:00:00:480
e — +
0] 23.58846 23.58846 23.58846 23.588 46 23.58846|
1| 23.58846 23.58846 23.58846 23.588 46 23.58846|
2| 23.58846 23.58846 23.58846 23.588 46 23.58846|
3| 23.58846 23.58846 23.58846 23.588 46 23.58846|
4] 23.58846 23.58846 23.58846 23.588 46 23.58846|
S — +
Line : 31043 - Time: 00:00:01:200
e — +
0] -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
1| -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211|
2| -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211|
3] -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
4] -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
S — +
Line : 169460 - Time: 00:00:06:565
e — +
0] -14.50695 -14.50695 -14.50695 -14.506 95 -14.50695|
1| -14.50695 -14.50695 -14.50695 -14.506 95 -14.50695|
2| -14.50695 -14.50695 -14.50695 -14.506 95 -14.50695|
3| -14.50695 -14.50695 -14.50695 -14.506 95 -14.50695|
4] -14.50695 -14.50695 -14.50695 -14.506 95 -14.50695|
S — +
Line : 1988876 - Time: 00:01:17:085
e — +
0| -78.49942 -78.49942 -78.49942 -78.499 42 -78.49942|
1| -78.49942 -78.49942 -78.49942 -78.499 42 -78.49942|
2| -78.49942 -78.49942 -78.49942 -78.499 42 -78.49942|
3| -78.49942 -78.49942 -78.49942 -78.499 42 -78.49942|
4| -78.49942 -78.49942 -78.49942 -78.499 42 -78.49942|
S — +
Line : 1989005 - Time: 00:01:17:090
e — +
0| -78.49984 -78.49984 -78.49984 -78.499 84 -78.49984|
1| -78.49984 -78.49984 -78.49984 -78.499 84 -78.49984|
2| -78.49984 -78.49984 -78.49984 -78.499 84 -78.49984|
3| -78.49984 -78.49984 -78.49984 -78.499 84 -78.49984|
4| -78.49984 -78.49984 -78.49984 -78.499 84 -78.49984|
S — +
Line : 1989134 - Time: 00:01:17:095
e +
0| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
1| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]|
2| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]|
3] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
4| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
e — +

Implementation for Q-DEVS

This implementation is the Adaptive Quantizatj@B] implementation for the Heart model.
The function used for local updating is the invefigection of the original (APA), which receives an
additional argument indicating the quantum valuethiés technique.
This function returns two values, which are:
1) the next value will overcome the LastThresholdVdlihe value that changes the region) for the
analyzed cell according to the specified quantum.
2) the time when this will occur.
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With this function, we can know when a cell willgsathe threshold value with the indicated quantoch a
which is that value.

However, the function cannot return two valuesastew implementation mechanism was used in order
to analyze the behavior of this quantum type andhtaia low the complexity when designing models.
The implemented mechanism used here for the argsmserlike a BEAN technique, where all the
necessary input values are set on the object thefeage of calling the function and the resultaalues

are got after calling the function from the usegeob

This was made using a setArg and getArg new funstaf CD++.

12 initialvalue : -85.0
13 initialCellsValue : QCorazon.val
14 localtransition : corazon-rule

15 [corazon-rule]

%La funcion setArg es para setear parametros en una celda.

%La funcion getArg es para obtener parametros de un a celda.

%Ambas reciben las coordenadas de la celda y el nro de parametro en cuetion.
Y%Parametros:

%0)Voltaje actual de la celda

%21)Estado de la celda (reposo o activa)

%2)Factor de discretizacion de la funcion original APA
%3)Quantum utilizado (10 en este ejemplo)

%Luego se setea otro parametro que es el delay para

%llegar al proximo g que es lo que devuelve APAINV

%y la funcion APAINV setea otro parametro mas que e s

%el valor que toma la funcion APA en el tiempo calc ulado (luego del delay)
%La siguiente regla, que ejecuta 1ro la condicion ( true en este caso),
%Luego el delay (que es cuando calculo el delay has ta el proximo q y

%la funcion internamente setea el voltaje con el qu e llego al proximno q
%y luego actualiza el valor de la celda con el para metro 5

%seteado por la funcion APAINV

16 rule : { getArg(cellpos(0)*100000+cellpos(1)*100+5) }

{
setArg(cellpos(0)*100000+cellpos(1)*100+0,(0,0) )+
setArg(cellpos(0)*100000+cellpos(1)*100+1, if(( 0,0)=-83.0,1.0,0.0) )+
setArg(cellpos(0)*100000+cellpos(1)*100+2,0.025 )+
setArg(cellpos(0)*100000+cellpos(1)*100+3,10)+
setArg(cellpos(0)*100000+cellpos(1)*100+4, APAI NV(cellpos(0),cellpos(1)))+
getArg(cellpos(0)*100000+cellpos(1)*100+4) / 0. 025*5

Ht}

The model description is the same as in the origieart model except for the rule, which uses the
inverse function of the APA function (called APAIN

The delay is obtained with the use of getArg(4)ction and the new cell voltage is obtained with
getArg(5) function (The getArg function gets intakralues calculated with the local function).

When this rule is evaluated, it sets the delayttieranalyzed cell with the future time when nexgioa or
threshold will be achieved (when the new value bdltransmitted through the CD++ tool).

The arguments used on the APAINV function are traesof the APA function plus a new argument, the
quantum, because with this mechanism the quantiwe Vs internal (it is for the APAINV function, not
for CD++). Thus this quantum value is not used loe €D++ tool, it is used on the inverse function
APAINV, as an internal argument. This is an intéauzantifier and CD++ makes no operations with this
specified quantum. Quantification is given by tbeadl function not by the tool. Of course, if we toy
quantify this function also with the tool, no adteges will be obtained because of the values useddw
be already quantified internally with the functiowhich is returning the future values setting the
corresponding future time for each value.

As we can see, the discretization factor used iAIAR is the same as in the APA function, but the
delay time is not (it depends on the result of MRAINV evaluation). The discretization factor iseds
always on the original function (for the discretiaa of the Hodgkin and Huxley differential equat).

The APAINV function uses APA internal calculatiottscalculate each value. In a way is searching the
next value that will change its region.

An example of the cells voltages values generayea $imulation with quantum 20 is showed above.
Line : 83 - Time: 00:00:00:000

0 1 2 3 4
S +
0] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]|
1| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000|
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2| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
3| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
4] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
o — +
Line : 212 - Time: 00:00:00:020
S — +
0] -79.80072 -79.80072 -79.80072 -79.800 72 -79.80072|
1| -79.80072 -79.80072 -79.80072 -79.800 72 -79.80072|
2| -79.80072 -79.80072 -79.80072 -79.800 72 -79.80072
3| -79.80072 -79.80072 -79.80072 -79.800 72 -79.80072|
4] -79.80072 -79.80072 -79.80072 -79.800 72 -79.80072|
o — +
Line : 728 - Time: 00:00:00:350
S — +
0| 4.28287 4.28287 4.28287 4.282 87 4.28287|
1| 4.28287 4.28287 4.28287 4.282 87 4.28287|
2| 4.28287 4.28287 4.28287 4.282 87 4.28287|
3| 4.28287 4.28287 4.28287 4.282 87 4.28287|
4] 4.28287 4.28287 4.28287 4.282 87 4.28287|
o — +
Line : 857 - Time: 00:00:00:380
B ettt L S e e +
0] 2051040 20.51040 20.51040 20.510 40 20.51040]|
1| 20.51040 20.51040 20.51040 20.510 40 20.51040]|
2| 2051040 20.51040 20.51040 20.510 40 20.51040)|
3| 20.51040 20.51040 20.51040 20.510 40 20.51040]|
4] 2051040 20.51040 20.51040 20.510 40 20.51040]|
o — +
Line : 1115 - Time: 00:00:01:200
S — +
0] -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
1| -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
2| -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
3| -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
4] -0.04211 -0.04211 -0.04211 -0.042 11 -0.04211]
o — +
Line : 1244 - Time: 00:00:18:430
o — +
0] -20.00027 -20.00027 -20.00027 -20.000 27 -20.00027|
1| -20.00027 -20.00027 -20.00027 -20.000 27 -20.00027|
2| -20.00027 -20.00027 -20.00027 -20.000 27 -20.00027|
3| -20.00027 -20.00027 -20.00027 -20.000 27 -20.00027|
4] -20.00027 -20.00027 -20.00027 -20.000 27 -20.00027|
S — +
Line : 1631 - Time: 00:01:17:095
o — +
0] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
1| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
2| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
3| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
4| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]

Leandro San Miguel

As we can see on the above lines, at Time: 00:0P001lwe have the value “-0.04211” and the next
output generated by the tool is at Time: 00:00:38:4vhere the value is “-20.00027” because of the
quantum value “20” in use. This is a very high tibmecause we have saved 17 seconds with a default
delays of 5 ms, which means 16995ms / 5ms = 33§8utsiavoided.

Implementation for GDEVS

[7] This implementation is based on polynomial appr@tions of the original function.

The first step in this study was to find a polynamapproximation to the original PDE (Partial
Differential Equations) defining the cell's behavid@he following Figure shows the result of this
approximation function:
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Figure 11. Linear approximation of the Action Potertial function.
We approximated the initial equation experimenttbdising twelve polynomials of degree one, in orde
to built a G-DEVS model of order 1. A higher lewdlaccuracy can be obtained using G-DEVS of higher
level with the same number of states and eventset. In the present case, the identificationhef t
parameters in each of the polynomials was obtamadmizing a quadratic criterion using minimum
squares. The polynomials we used in Figure 11 efieet by:
P({)=at+h gid[1, 12]
using the following coefficients:

i ai bi Time (ms)

1 0.12686423 -83.0275035 [0, 285)

2 0.36919131 -151.270449 [285, 315)

3 1.09229907 -378.594614 [315, 360)

4 0.15268376 -38.3409317 [360, 415)

5 -0.00494316 26.3 [415, 470)

6 -0.03836983 40.7043237 [470, 980)

7 -0.01071088 13.0643535 [980, 1780)

8 -0.001545 -3.18042127 [1780, 5030)

9 -0.00036934 -11.4659057 [5030, 18430)
10 -0.0019262 16.6510351 [18430, 39940)
11 -0.00045075 -47.0156891 [39940, 77095)
12 0 -83 [77095, inf)

Table 1. Polynomial coefficients for the action pantial model

Even the original function has an appearance tsitnple, we needed to use twelve polynomials. This
was due to the fact that, when the cell is triggahe signal generated by the Hodgkin-Huxley maslel
highly non-linear. Thus, we needed to approximhte dction potential using different polynomials (as
shown in Table 1).

: N-CD++ GrafCell 19 [=] S
)

Eac aborta o prasions ona tecla. .

Figure 12. Approximation of the Action Potential function: action triggering.

When using GDEVS for this model, we need to tramsfthe coefficients in the polynomials into diseret
event signals. Each cell uses polynomial coeffisiga compute the current state and to inform #iksc
state to the neighbors as showed in Figure 13.spkeification of the local computing function ind&d

in each of the cells will now receive the curreogéficient from the neighboring cells, as showriigure
13.a). Each cell is now defined as shown in figiBeb), and it will receive the coefficients of the
neighbors by the way of an event of order 1, wiiihbe used to compute the state of the cell. télés
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outputs will now be the current cell states spedifas polynomial coefficients. Timing of activatifor
each polynomial can be easily defined using theahddlay functions.

GDEVS

GDEvS

P mosl 3 )
ael

_ ' 0 a:‘ — — az(jjjj
. b, — o
model

(a) (b)

Figure 13. GDEVS cell specification (a) model inteonnection (b) cell input data.

Using these ideas and the polynomial definition$able 1, we can now define the actions of eadhef
cell's local computing functions, which are deseditby the state graph in the following Figure 14eT
figure defines a G-DEVS model with the classicalestransition functions using events of order le T
figure represents internal transitions in dotte@di, and external transitions in full lines.

Input event
a, bi
(external Internal transition

transition) a1 Q2

s0
passive

=285 (al, bl) =3
output event

Internal transition

59
g=13400

{all, b11)

event

(a2, b2)
output event

output event

(a3, b3)
output event

output event

Figure 14. GDEVS specification of a cell.

As we see, the cell is inactive until it receivesexternal stimulus from a neighboring cell. Inttbase,

the cell is activated, and it produces internakestehanges, (represented by the coefficient in the
polynomials, which are transmitted to the neighbgrcells after the delay). The model flows through
eight different states represented by each of thgnpmials, plus an extra state to put the mod& o
resting state.

This specification will generate an output trajegtas the one described by the linear approximation
Figure 12. As we can see, this highly improves rhpdecision at a low cost, in terms of both exemuti
time and ease of modeling. The following Figureshdws the model implementation for a cell space in
which each cell is created using the state madhifégure 14.

%modelo del Corazon implementado con GDEVS en 2d co n multiples reglas
%para los coeficientes
o
%Ejecutar con parametros -c00:00:00:005 (discrete t ime tik 5ms)
Lo ——
1 [top]
2 components : heart-GDEVS

[heart-GDEVS]

type : cell

dim : (5,5)

delay : transport

defaultDelayTime : 5

border : nowrapped

neighbors : (0,-1) (0,0) (-1,0) (-1,-1)

©CoOo~NOOUbhW
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16

17

18

19

20

21

22

23

24

neighbors : (0,1) (1,0) (-1,1) (1,2) (1,-1)
initialvalue : -83.0

initialCellsValue : corazon2dnr.val
localtransition : heart-rule-GDEVS

[heart-rule-GDEVS]

rule : {-85.0 } { 0 + setArg(cellpos(0)*100000+cel
-83.0}
rule : {0.126864227498678 * ( time - getArg(cellpo
- 83.027503469064 } 5 { (0,0) = -83.0 and time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 0 a
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 285
rule : {0.369191314285707 * ( time - getArg(cellpo
- 151.270449333331 } 285 { (0,0) != -83.0 and time
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 285
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 315
rule : {1.09229907142865 * (time - getArg(cellp
0) ) - 378.594613571453 } 30 {(0,0) !=-83.0 and ti
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 315
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 360
rule : {0.152683762237757 * ( time - getArg(cellp
0) ) - 38.3409316783197 } 45 {(0,0) !=-83.0 and ti
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 360
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 415
rule : {-0.00494316363636244 * ( time - getArg(ce
+0)) + 26.3}55{(0,0) I=-83.0 and time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 415
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 470
rule : {-0.0383698302729355 * ( time - getArg(cel
+0)) +40.7043236511447 } 45 {(0,0) != -83.0 and
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 470
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 980
rule : {-0.010710876279456 * ( time - getArg(cell
0) ) + 13.0643535113489 } 510 {(0,0) !=-83.0 and t
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 980
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 1780

rule : {-0.001545 * ( time - getArg(cellpos(0)*10
3.18042127392896 } 800 {(0,0) = -83.0 and time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 178
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 5030

rule : {-0.000369342915756289 * ( time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) ) - 11
83.0 and time - getArg(cellpos(0)*100000+cellpos(1)
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 1843

Ipos(1)*100 + 0, time) } { (0,0) =
s(0)*100000+cellpos(1)*100 + 0) )
nd time -
}
s(0)*100000+cellpos(1)*100 + 0) )
and time -
0s(0)*100000+cellpos(1)*100 +
me -
and time -
0s(0)*100000+cellpos(1)*100 +
me -
and time -
lIpos(0)*100000+cellpos(1)*100
and time -
Ipos(0)*100000+cellpos(1)*100

time -
and time -

pos(0)*100000+cellpos(1)*100 +
ime -
and time -

}
0000+cellpos(1)*100 + 0) ) -

0 and time -

}

.4659056569606 } 3250 {(0,0) != -
*100 + 0) >= 5030 and time -
0}

25 rule: {-0.00192620311952202 * ( time - getArg(ce lIpos(0)*100000+cellpos(1)*100
+0)) + 16.6510350787401 } 13400 {(0,0) I=-83.0 a nd time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 184 30 and time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 3994 0}

26

rule : {-0.000450748899007899 * ( time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) ) - 47
-83.0 and time - getArg(cellpos(0)*100000+cellpos(1
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) < 7709

.0156891246265 } 21505 {(0,0) |=
)*100 + 0) >= 39940 and time -
5}

27 rule: {-83.0} 37155 {(0,0) !=-83.0 and time -
getArg(cellpos(0)*100000+cellpos(1)*100 + 0) >= 770 95}
28 rule: {(0,0)}5{t}

Figure 15. Cell-DEVS/GDEVS implementation of the hart tissue model.

This specification starts by defining the size loé tcell space (5 x 5), and the remaining parameters
needed by a Cell-DEVS specification. In this casansport delays, a non-wrapped model, and the
neighborhood shape, which includes all the adjacelté. Then, we define the local computing functio
heart-rule-GDEVS. This local computing functionléals the specification in Figure 14. If a stimulgs
received when the cell is inactive ((0,0)=-83)will change to the corresponding state (Si, tol#ieof

the specification). Each of the rules represertslés state change, and the spread of the casffiito

the neighbors. Each of the cells will repeat thiedvér here defined, while storing the voltage ealor
display, which is showed in the following figure.

Line : 212 - Time: 00:00:00:000
0 1 2 3 4
S +
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0] -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
1| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
2| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
3| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
4| -85.00000 -85.00000 -85.00000 -85.000 00 -85.00000]
S — +
Line : 341 - Time: 00:00:00:005
o — +
0] -83.02750 -83.02750 -83.02750 -83.027 50 -83.02750]
1| -83.02750 -83.02750 -83.02750 -83.027 50 -83.02750]
2| -83.02750 -83.02750 -83.02750 -83.027 50 -83.02750]
3| -83.02750 -83.02750 -83.02750 -83.027 50 -83.02750]
4] -83.02750 -83.02750 -83.02750 -83.027 50 -83.02750]
o — +
Line : 7565 - Time: 00:00:00:285
S — +
0| -47.50552 -47.50552 -47.50552 -47.505 52 -47.50552)
1| -47.50552 -47.50552 -47.50552 -47.505 52 -47.50552)
2| -47.50552 -47.50552 -47.50552 -47.505 52 -47.50552)
3| -47.50552 -47.50552 -47.50552 -47.505 52 -47.50552)
4| -47.50552 -47.50552 -47.50552 -47.505 52 -47.50552)
o — +
Line : 7823 - Time: 00:00:00:615
B ettt E S e e +
0] 18.83352 18.83352 18.83352 18.833 52 18.83352
1| 18.83352 18.83352 18.83352 18.833 52 18.83352
2| 18.83352 18.83352 18.83352 18.833 52 18.83352
3| 18.83352 18.83352 18.83352 18.833 52 18.83352
4] 18.83352 18.83352 18.83352 18.833 52 18.83352
o — +
Line : 8855 - Time: 00:00:00:975
S — +
0] 5.02038 5.02038 5.02038 5.020 38  5.02038
1| 5.02038 5.02038 5.02038 5.020 38 5.02038
2| 5.02038 5.02038 5.02038 5.020 38 5.02038
3| 5.02038 5.02038 5.02038 5.020 38 5.02038
4] 5.02038 502038 5.02038 5.020 38  5.02038
o — +

Line : 10763 - Time: 00:01:09:795

S — +

0] -68.78235 -68.78235 -68.78235 -68.782 35 -68.78235|
1| -68.78235 -68.78235 -68.78235 -68.782 35 -68.78235|
2| -68.78235 -68.78235 -68.78235 -68.782 35 -68.78235|
3| -68.78235 -68.78235 -68.78235 -68.782 35 -68.78235|
4| -68.78235 -68.78235 -68.78235 -68.782 35 -68.78235|
S +

As we can see, outputs are generated at the sgktifies for each polynomial representation shoaved
figure 14. For instance, after Time: 00:00:00:008hwalue “-83.02750” next activation occurs at &m
00:00:00:285 with value “-47.50552". Time = 5msrespond to state SO and Time = 285ms correspond
to state S1 of Figure 14.

5 Watershed Model Description and Implementations

[16] In this section we considered a case of study ofitural phenomena’s. Watershed are natural
regions defined by the shape of the land surfa¢e¢hwstore up water because of rain, mountains ice
melting and rivers (as is shown in Figure 16).
With the use of computerized Geographic Informatiystems (GIS) the watershed limits can be defined,
generating topology maps of the zone with high igfexn and resolution

5 i

A7 g

Watershed
Delimitation

Figure 16 — Watershed GIS System View
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Several verticals layers compose a watershed vegetation, water surface, land surface and stdres
model can be divided in equal portions of landI§ednd a hydrology theory model can be applied to
each portior{15] . In each cell the behavior of the water flow (how thater is distributed through the
land and how the topology of the land makes it eot@te or accumulate in determined places) can be
analyzed.

l Rain Water
It
Excedent water flowi - \Water received t
to neighbor lands de superfic the
vs(®) Effective water ve(t)
4—| l\em

Acumulated water
Ac(t)
1T

Land absorcion water
0

Figure 17 — Hydrology theory model

Figure 17 shows the theory hydrologic model usedilie simulation. When the waterfall part of it is
absorbed by the vegetation existing in the surfdmerest, the effective quantity of water, is reed by

the surface. Depending on the topology of the ldahd,cells can also receive/send, water from/to the
neighbor cells. In this case, the neighbor celisthe 4 ones located in the North, South, Eastvsest.

At the end , part of the water received by theaaefis lost due to the filtration over the land atahes.
Therefore, it can be defined over this model thptlldef the water during a period of time in onel cel
through:

i=1 i=1

Ac(t) = [ (le(t) + ilvei (t) - ilvsi (t) - f(0)dt )

R.C, (1) Ac(t)
D

Ivs (1) =

Where:

Ac = Accumulated water in one cell in millimeters

le = Quantity of effective water

Ive; = Quantity of water dumped from the neighbor §"the cell

Ivs; = Quantity of water dumped to the neighbor “i” whée limit of the cell is exceed.
f = Quantity of filtrated water.

Rs = Surface characteristic (rugosity

D; = distance between the cell and theéighbor

Ci = land inclination with respect to tH& meighbor, calculated as follows:

(2)

c(t) = Ac(t) +h —DAci (t)—-h 3)

Where:

Ac = accumulated water on the cell
h = cell high

Ac; = accumulated water on the cell i
h; = high of the cell i

As we can see in the equation (1), the accumulgtedtity of water during a period of time depends o

e The quantity of effective water (rain).

« The quantity of water dumped from the neighborscéltiepending on the quantity of effective
rain water plus the water received --dependinghenland inclination-- by the neighbor cells
minus the water sent to his neighbors when thehibifyaof the cell is achieved, and minus the
filtered water on the stones and the land).

The equation (2) defines the quantity of water genthe neighbors, the argumedt (equation (3) )
determines the quantity depending on the landniatthn, which is the height difference betweendélkk
and its neighbors.
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The simulation is the height of water on each ttetbugh a period of time with an intensity of 7,92n
per hour, rain defined as very intense, constanutgh that period of time and in all the land scefa

Original CD++ Implementation

01 [top]

02 components : Watershed

03

04 [Watershed]

05 type : cell

06 dim: (30,30,2)

07 delay : transport

08 defaultDelayTime : 1000

09 border : nowrapped

10 neighbors : Watershed(-1,0,0)

11 neighbors : Watershed(0,-1,0) Watershed(0,0,0) Wate rshed(0,1,0)

12 neighbors : Watershed(1,0,0)

13

14 neighbors : Watershed(-1,0,1)

15 neighbors : Watershed(0,-1,1) Watershed(0,0,1) Wate rshed(0,1,1)

16 neighbors : Watershed(1,0,1)

17

18 initialvValue : 0

19 initialCellsValue : topo_l.val

20 localtransition : Hydrology

21

22 [Hydrology]

23

24 rule : {0.0022 + (0,0,0) - if((((-1,0,0) = ?) and (((0,0,1) +
(0,0,0)>((-1,0,1) + (-1,0,0))).(((((0,0,0) + (0,0 1) -(-1,0,0) - (-
1,0,1))/1000) * (0,0,0))/1000),0) - if((((1,0,0) != ?) and (((0,0,1) +
(0,0,0))>((1,0,1) + (1,0,0)))).(((((0,0,0) + (0,0 ,1) - (1,0,0) -
(1,0,1))/1000) * (0,0,0))/1000),0) - if((((0,-1,0) 1=?) and (((0,0,1) +
(0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1 )-(0,-1,0) - (O,-
1,1))/1000) * (0,0,0))/1000),0) - if((((0,1,0) !=? ) and (((0,0,1) +
(01010))>((01111) + (01110))))!(((((01010) + (01011 ) - (Ovlro) -
(0,1,1))/1000) * (0,0,0))/1000),0) + if((((-1,0,0) I=?)and (((-1,0,1)
+(-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1 ,0,1) - (0,0,0) -
(0,0,1)) * (-1,0,0))/1000),0) + if((((1,0,0) != ?) and (((1,0,1) +
(1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1))
*(1,0,0))/1000),0) + if((((0,-1,0) !=?) and (((O, -1,1) + (O,-
1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) -(0,0,0) - (0,0,1))
* (0,-1,0))/1000),0) + if((((0,1,0) '=?) and (((O, 1,1) +
(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) -(0,0,0) - (0,0,1))
*(0,1,0))/1000),0) } 1000 { cellpos(2)=0}

25 rule : { (0,0,0) } 1000 {t}

Figure 18 — Watershed model CD++ implementation

Figure 18 shows the model specification of theinabmodel.

Line 2 defines the cell-DEVS component denominated Wagetsh

Line 4 defines the componeritine 5 indicates CD++ that is a cellular model. The mdued two slides,
slide O represents the accumulated water and Elitle height of each cell with respect to the seall

Line 6 defines de dimension. Each slide has 30x30 cetissach one of them represents 1mx1m.

Line 7 defines the delay type as transpdiine 8 defines de default delay as 1 second.

Line 9 defines the border type for the model, which isnmapped, which means that the border cells are
not connected with the opposite bordeines 10 to 16defines the relative positions of the neighbors
which are all the adjacent top, bottom, left amghricells and the analyzed cell (this means N@tuth,
East and West because this model considers wadechange between these cells).

Line 18 defines the default value for every cell, whictDi®. The real initial value of each cell will be
defined on next lineline 19 indicates the file with the initial values for eacdll, which in this case is
the initial capability of each celline 20 is the name of the section with the behavior riitesthe
cellular model.Line 22 is beginning of the rules description section.edists two ruled, because the
behavior is the same for all cells on slide 0 antide 24 defines the quantity of water will have a cell
after 1 second, considering the water it had befine water increment because of rain on the pesfod
time, the water added by the neighbors who achiésezhpabilities and the water sent to the neighifo
this cell achieved its maximum capability. The samid received water depend of the maximum
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capability of each cell and the land inclinatiomuition (3) calculates individually with each ndigh

cell the land inclination. If a neighbor has morater than the height of the analyzed cell, the wéll
receive water from it once the neighbor level isiaeed. The same calculation is made if the heidht
the analyzed cell is bigger than the neighbor heigh

The rule of line 24 starts with the constant valhbijch represents the quantity of effective wateamm
intense rain (0.0022 mm/sec = 7.92 mm/hour). Thisier is added to the water the cell already had a
second before, plus the received water from itght®rs, minus the water sent to its neighbors.

Line 25 does not modify the state of the cells.

On the next graph the results of a simulation eaolserved considering an intense rain.

(a) Land topology. (b) After 5 minutes of rain.

(c) After 10 minutes. (d) After 15 minutes.

(e) Af’t‘er 20 minutes. i (f) After 30 minutes.

(9) After 45 minutes of rain the land is fully filled with the water.
New CD++ Implementation

This is the Watershed model simplified with the dtion WSHED incorporated into CD++ (same
mechanism as mentioned in the Heart model seativh the APA function).
As a difference of the original model, this modelpiementation uses only one plane (2 dimensions)
because cells capabilities are stored automatiaallythe internal WSHED function at time 0. In the
original model, one plane was used to store thalulty of each cell and on the other the accuniat
of water. With this implementation, the capabibiyd the variation are the same as a result ofuirecf
both (capability and variation). The second plasedubefore to keep alive the model is no more rkede
because of the new CD++ “-¢” argument, which kettigsmodel alive generating external messages for
those cells without activity.

| 1. [top] |
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2. components : Watershed

3. [Watershed]

4.  type: cell

5. dim:(16,28)

6. delay : transport

7. defaultDelayTime : 1000
8. border : nowrapped

9: neighbors : Watershed(-1,0)
10. neighbors : Watershed(0,-1) Watershed(0,0) Waters hed(0,1)
11. neighbors : Watershed(1,0)

12. initialvalue : 0.0
13. initialCellsValue : topo1528.val
14. localtransition : Hydrology

15. [Hydrology]

% La funcion WSHED recibe como parametros la celda, su propio valor actual, la celda
vecina y el valor de ésta.

%Esto se repite para cada una de las vecinas (el de splazamiento para representar las
coordenadas de las vecinas, se indica con los sig n ros: %0=>1, 1=>2, -1=>3).

16.rule: { (0,0) + 0.0022 +
if( ((-1,0) !=?), WSHED( cellpos(0)*1000+cellpos(1 )*1000000+(0,0),
3*1000+1*1000000+(-1,0) ), 0.0) +

if( ((1,0) != ?), WSHED( cellpos(0)*1000+cellpos(1) *1000000+(0,0),
2*1000+1*1000000+(1,0) ), 0.0) +

if( ((0,1) != ?), WSHED( cellpos(0)*1000+cellpos(1) *1000000+(0,0),
1¥1000+2*1000000+(0,1) ), 0.0) +

if( ((0,-1) != ?), WSHED( cellpos(0)*1000+cellpos(1 )*1000000+(0,0),
1*1000+3*1000000+(0,-1) ), 0.0)
11000 {t}

The function WSHED is called three times in the sarale in order to calculate the new value
considering the four neighbors. The function reeegi@ arguments, which are:
e The x and y position of the analyzed cell (2 argotse
e The current value (accumulated water) of the cell
* The x and y offset position of its neighbor to wate the function which neighbor is sending
water to the cell (because the function has toutale the amount of water to receive from each
neighbor) (2 arguments).
e The current value (accumulated water) of the aralyzeighbor.

On Lines 1 and 2the unique Cell-DEVS model Watershed is defined.li@e 3 the model description
begins.Line 4 indicates CD++ that is a cellular modkilne 5 is the defined dimension of the cellular
space. In this case, we have a space of 16x28 teiks 6 defines the delay type of the model for each
cell. In this case, the delay type used is trartspore 7 defines default delay, 1000 milliseconds in this
model and it's the same delay for every cell (thirot necessary true on the real model, but isigmao
make the simulation analysid)ine 8 defines the border type for the model, which isamapped, which
means that the border cells are not connectedthétopposite bordeLines 9 to 11defines the relative
positions of the neighbors which are all the adjat¢ep, bottom, left and right cells and the anetjzell
(this means North, South, East and West becausertbdel considers water interchange between these
cells).Line 12 defines the default value for every cell, whicl®i8. The specific initial value of each cell
will be defined on next lineline 13 indicates the file with the initial values for eacéll, which in this
case is the initial capability of each céline 14 is the name of the section with the behavior rédeshe
cellular modelLine 15 is the beginning of the rules description sectldne 16 is the first rule (and the
unique in this model). This rule defines the loopdating function of each cell, which represents a
portion of the land.

An example of the cells values (capability and atdon) generated by a simulation without quantum is

showed above.
Line : 1352 - Time: 00:00:00:000

0 1 2 3
0| 100.00000 98.00000 96.00000 89.000 00
1] 100.00000 98.00000 96.00000 89.000 00
2| 100.00000 98.00000 96.00000 89.000 00
3| 100.00000 100.00000 98.00000 96.000 00
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100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
98.00000

100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
100.00000
98.00000
96.00000

98.00000 96.000
98.00000 96.000
100.00000 98.000
100.00000 98.000
100.00000 100.000
100.00000 100.000
100.00000 100.000
100.00000 100.000
100.00000 98.000
98.00000 96.000
96.00000 89.000
89.00000 88.000

- 270632 - Time: 00:02:00:000

100.26397
100.26397
100.26397
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26394
98.29513

98.29514
98.29542
98.32582
100.26394
100.26397
100.26397
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26400
100.26394
98.32578
96.33368

96.29774 89.382
96.29808 89.384
96.33368 89.508
98.29510 96.297
98.29542 96.298
98.32582 96.333
100.26394 98.295
100.26397 98.325
100.26400 100.263
100.26400 100.264
100.26400 100.264
100.26400 100.263
100.26394 98.325
98.32578 96.336
96.33621 89.518
89.51847 88.320

: 674552 - Time: 00:05:00:000

100.65981
100.65981
100.65983
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.65965
98.84766

98.84815
98.85942
99.01795
100.65966
100.65982
100.65984
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.66000
100.65968
99.01769
97.14160

96.89319 90.478
96.91145 90.589
97.14164 91.340
98.84791 96.892
98.85942 96.911
99.01796 97.143
100.65966 98.859
100.65984 99.017
100.66000 100.659
100.66000 100.660
100.66000 100.660
100.66000 100.659
100.65968 99.017
99.01770 97.181
97.18155 91.526
91.50746 89.548

: 1347302 - Time: 00:10:00:000

101.31935
101.31939
101.31956
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.32000
101.31903
99.97222

99.99552
100.10094
100.41216
101.31911
101.31950
101.31964
101.32000
101.32000
101.32000
101.32000

101.32000

101.32000

101.32000

101.31928

100.41143

99.12374

98.37088 94.300
98.60284 95.221
99.12812 96.265
99.99493 98.370
100.10097 98.610
100.41219 99.159
101.31915 100.100
101.31964 100.412
101.32000 101.319
101.32000 101.320
101.32000 101.320
101.32000 101.319
101.31928 100.411
100.41155 99.319
99.31902 97.055
96.93607 95.746
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Implementation for Q-DEVS

This is the Adaptive Quantization implementationtted Watershed model.
The function used for local updating is the inversmction of the original (WSHED). This
implementation is similar to the APAINV function tife Heart implementation showed before.

%Modelo Watershed implementado con Q-DEVS con funci on WSHINV
o
%Ejecutar CON parametros -c00:00:01:000 (discrete t ime tik 1s)
%No cuantificable x simulacion. Cuantificable x par ametro

%interno nro 6
O ——

1 [top]

2 components : Watershed

3 [Watershed]

4 type:cell

5 dim:(16,28)

6  delay : transport

7  defaultDelayTime : 1000

8  border : nowrapped

9  neighbors: Watershed(-1,0)
10 neighbors : Watershed(0,-1) Watershed(0,0) Waters hed(0,1)
11 neighbors : Watershed(1,0)

12 initialvalue : 0.0
13 initialCellsValue : topo1528.val
14 localtransition : Hydrology

15 [Hydrology]
%0=>1, 1=>2, -1=>3

16 rule : { getArg(cellpos(0)*100000+cellpos(1)*100+8) }
{
setArg(cellpos(0)*100000+cellpos(1)*100+0,( 0, 0))+
setArg(cellpos(0)*100000+cellpos(1)*100+1, if( (-1, 0) I=?,(-1, 0),-1.0) )+
setArg(cellpos(0)*100000+cellpos(1)*100+2, if( ( 1, 0)!=?,(1,0),-1.0) )+
setArg(cellpos(0)*100000+cellpos(1)*100+3, if( ( O, 1)1=2,(0, 1),-1.0) )+
setArg(cellpos(0)*100000+cellpos(1)*100+4, if( ( O, -1) 1=?2,(0,-1),-1.0) )+

setArg(cellpos(0)*100000+cellpos(1)*100+5,1000)+
setArg(cellpos(0)*100000+cellpos(1)*100+6,1.0)+
setArg(cellpos(0)*100000+cellpos(1)*100+7, WSHINV(c ellpos(0),cellpos(1)))+
getArg(cellpos(0)*100000+cellpos(1)*100+7)

Ht}

The WSHINV function is called with the same argutsesf the WSHED function with an additional one
(argument number 6 ), which is the quantum valsegdunternally by the function (1.0 on the example)
The rule is first setting all the arguments witke thetArg function and calling the WSHINV function,
which returns and sets a new argument with theydelathis calculation. Finally, the getArg functidgs
used to retrieve the new local value for the celé{Arg( x..y..8) returns thé"@&rgument for the x:y cell
of the WSHINV function ).

An example of the cells values (capability plusmitg of water) generated by a simulation with qtugm

1.0 is showed above.
Line : 1203 - Time: 00:00:00:000

0 1 2 3

+ —-
0| 100.00000 98.00000 96.00000 89.000 00
1] 100.00000 98.00000 96.00000 89.000 00
2| 100.00000 98.00000 96.00000 89.000 00
3| 100.00000 100.00000 98.00000 96.000 00
4| 100.00000 100.00000 98.00000 96.000 00
5/ 100.00000 100.00000 98.00000 96.000 00
6] 100.00000 100.00000 100.00000 98.000 00
7| 100.00000 100.00000 100.00000 98.000 00
8| 100.00000 100.00000 100.00000 100.000 00
9| 100.00000 100.00000 100.00000 100.000 00
10| 100.00000 100.00000 100.00000 100.000 00
11| 100.00000 100.00000 100.00000 100.000 00
12| 100.00000 100.00000 100.00000 98.000 00
13| 100.00000 100.00000 98.00000 96.000 00
14| 100.00000 98.00000 96.00000 89.000 00
15| 98.00000 96.00000 89.00000 88.000 00
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+

Line : 2812 - Time: 00:07:35:000

0| 101.00024 99.00024 96.00000 90.000 47

1| 101.00009 99.00009 96.00000 90.000 32
2| 101.00009 99.00024 96.00000 90.000 a7
3] 101.00055 100.00000 98.00000 96.000 00
4| 101.00055 100.00000 99.00009 96.000 00
5| 101.00055 100.00000 99.00024 96.000 00
6/ 101.00055 101.00039 100.00000 98.000 00
7] 101.00055 101.00039 100.00000 99.000 24
8] 101.00055 101.00039 101.00039 100.000 00
9] 101.00055 101.00039 101.00039 101.000 39
10| 101.00055 101.00039 101.00039 101.000 39
11| 101.00055 101.00039 101.00039 100.000 00
12| 101.00055 101.00039 100.00000 98.000 00
13| 101.00055 100.00000 98.00000 96.000 00
14| 100.00000 98.00000 96.00000 90.000 24
15| 99.00039 96.00000 90.00062 89.000 39

Line : 4958 - Time: 00:10:00:000

0] 101.00024 99.00024 97.00130 91.001 03
1| 101.00009 99.00009 97.00115 91.000 68
2| 101.00009 99.00024 97.00130 92.006 37
3| 101.00055 101.00168 99.00183 97.001 74
4| 101.00055 101.00213 99.00009 97.001 15
5| 101.00055 101.00213 99.00024 97.001 30
6] 101.00055 101.00039 101.00168 99.001 83
7] 101.00055 101.00039 101.00213 99.000 24
8| 101.00055 101.00039 101.00039 101.001 68
9] 101.00055 101.00039 101.00039 101.000 39
10| 101.00055 101.00039 101.00039 101.000 39
11| 101.00055 101.00039 101.00039 101.001 68
12| 101.00055 101.00039 101.00168 99.001 98
13| 101.00055 101.00168 99.00198 97.002 94
14| 101.00183 99.00198 97.00294 92.006 58
15| 99.00039 97.00145 92.00707 89.000 39

Implementation for GDEVS

Here we have the GDEVS implementation of the Wateismodel, using a similar mechanism of the
GDEVS implementation showed in the Heart model. Bifeerence here is that we have only one
polynomial function with only one state. The fuoctiwas approximated using a single polynomial
function of order 1.

The al and b1 values for the al*t + b1l polynomiaktion are 1/90 for al and O for b1. The delathef
rule is 20 seconds corresponding with the specpi@ginomial.

The polinomy used is defined by:

P(=at+h Oid[1, 1]

using the following coefficients:

i ai Bi Time (ms)
1 0.01111... 0 [0, inf)

%Modelo Watershed implementado con GDEVS
%

%Ejecutar CON parametros -c00:00:01:000 (discrete t ime tik 1s)
Lo ——
1 [top]

2 components : Watershed

3 [Watershed]

4 type: cell

5 dim:(16,28)
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6  delay : transport

7  defaultDelayTime : 1000

8  border : nowrapped

9  neighbors Watershed(-1,0)

10 neighbors: Watershed(0,-1) Watershed(0,0) Waters hed(0,1)

11 neighbors

12 initialvalue : 0.0
13 initialCellsValue : topo1528.val
14 localtransition : Hydrology

15 [Hydrology]

%0=>1, 1=>2, -1=>3

Watershed(1,0)

16 rule:
{(0,0) + ( 100 - getArg(cellpos(0)*100000+cellpos( 1)*100+0))/90}
{20000 + if( getArg(cellpos(0)*100000+cellpos(1)*1 00 + 0)=0,
setArg(cellpos(0)*100000+cellpos(1)*100 + 0, (0,0)) ,0)}

{(0,0)< 100.0 }

17 rule:{(0,0)}20000{t}

This model is like the Cell-DEVS one, but the diéflece is on the rule, which has the polynomial

function instead of the WSHED function.

With the polynomial definitions we can define thaians of each of the cell's local computing fuons,

which are described by the state graph in the viollg Figure19. The Figure defines a G-DEVS model

with the classical state transition functions usnwgnt of order 1.

An example of the cells capability plus accumulateater values generated by a simulation is showed

above.

Tnput event
al, bi
(external
transition)
——»

s0
passive

Internal transition

(al, b1)

output event

Figure 19. GDEVS specification of a cell.

Line : 1353 - Time: 00:00:00:000

0 1 2 3

+ —-
0| 100.00000 98.00000 96.00000 89.000 00
1] 100.00000 98.00000 96.00000 89.000 00
2| 100.00000 98.00000 96.00000 89.000 00
3| 100.00000 100.00000 98.00000 96.000 00
4| 100.00000 100.00000 98.00000 96.000 00
5/ 100.00000 100.00000 98.00000 96.000 00
6/ 100.00000 100.00000 100.00000 98.000 00
7] 100.00000 100.00000 100.00000 98.000 00
8| 100.00000 100.00000 100.00000 100.000 00
9| 100.00000 100.00000 100.00000 100.000 00
10| 100.00000 100.00000 100.00000 100.000 00
11| 100.00000 100.00000 100.00000 100.000 00
12| 100.00000 100.00000 100.00000 98.000 00
13| 100.00000 100.00000 98.00000 96.000 00
14| 100.00000 98.00000 96.00000 89.000 00
15| 98.00000 96.00000 89.00000 88.000 00
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Line : 3537 - Time: 00:00:20:000

0| 100.00000 98.02222 96.04444 89.122 22
1| 100.00000 98.02222 96.04444 89.122 22
2| 100.00000 98.02222 96.04444 89.122 22
3| 100.00000 100.00000 98.02222 96.044 44
4| 100.00000 100.00000 98.02222 96.044 44
5| 100.00000 100.00000 98.02222 96.044 44
6| 100.00000 100.00000 100.00000 98.022 22
7| 100.00000 100.00000 100.00000 98.022 22
8| 100.00000 100.00000 100.00000 100.000 00
9| 100.00000 100.00000 100.00000 100.000 00
10| 100.00000 100.00000 100.00000 100.000 00
11| 100.00000 100.00000 100.00000 100.000 00
12| 100.00000 100.00000 100.00000 98.022 22
13| 100.00000 100.00000 98.02222 96.044 44
14| 100.00000 98.02222 96.04444 89.122 22
15| 98.02222 96.04444 89.12222 88.133 33

Line : 34099 - Time: 00:05:00:000

0| 100.00000 98.30862 96.61723 90.697 38
1] 100.00000 98.30862 96.61723 90.697 38
2| 100.00000 98.30862 96.61723 90.697 38
3| 100.00000 100.00000 98.30862 96.617 23
4| 100.00000 100.00000 98.30862 96.617 23
5| 100.00000 100.00000 98.30862 96.617 23
6| 100.00000 100.00000 100.00000 98.308 62
7| 100.00000 100.00000 100.00000 98.308 62
8| 100.00000 100.00000 100.00000 100.000 00
9| 100.00000 100.00000 100.00000 100.000 00
10| 100.00000 100.00000 100.00000 100.000 00
11| 100.00000 100.00000 100.00000 100.000 00
12| 100.00000 100.00000 100.00000 98.308 62
13| 100.00000 100.00000 98.30862 96.617 23
14| 100.00000 98.30862 96.61723 90.697 38
15| 98.30862 96.61723 90.69738 89.851 69

Line : 66392 - Time: 00:10:00:000

0| 100.00000 98.56961 97.13922 92.132 85
1] 100.00000 98.56961 97.13922 92.132 85
2| 100.00000 98.56961 97.13922 92.132 85
3| 100.00000 100.00000 98.56961 97.139 22
4| 100.00000 100.00000 98.56961 97.139 22
5| 100.00000 100.00000 98.56961 97.139 22
6/ 100.00000 100.00000 100.00000 98.569 61
7| 100.00000 100.00000 100.00000 98.569 61
8| 100.00000 100.00000 100.00000 100.000 00
9| 100.00000 100.00000 100.00000 100.000 00
10| 100.00000 100.00000 100.00000 100.000 00
11| 100.00000 100.00000 100.00000 100.000 00
12| 100.00000 100.00000 100.00000 98.569 61
13| 100.00000 100.00000 98.56961 97.139 22
14| 100.00000 98.56961 97.13922 92.132 85
15| 98.56961 97.13922 92.13285 91.417 65
+ —-

6 Flow Injection Analysis Model Description and Implenentations

[17] Flow-injection methods are analytical methods u$ed automated sample analysis of liquid
samples. In a flow injection analyzer, a small &irdd volume of a liquid sample is injected as scdéte
zone using an injection device into a liquid cagrighich flows through a narrow tube. As a resdlt o
convection at the beginning, and later of axial eatlal diffusion, this sample is progressivelgmirsed
into the carrier as it is transported along theetuthe addition of reagents at different confluepomts
(which mix with the sample as a result of radialpdirsion) produces reactive or detectable speghgsh
can be sensed by flow-through detection devicegrgi20 presents a simple flow-injection apparatus.
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Figure 20 : A FIA manifold.

This device (called a FIA manifold) consists onegigtaltic pump (P) that adds carrier solution {#p a
valve (l) that connects to a tube called a rea@@@). At the end of the tube a detector is placesense
a specific property of the flowing solution. Thelweacan be turned to allow the flow of the samg (
into the reactor. The sample is held in the loognd when the valve is rotated its contents flow ihie
reactor, where chemical activity will usually talace between the sample and the carrier solutisra
result, a change will be observed in the signatipced by D, making it possible to quantify the skemp
after comparing the results with those obtaine&rywn samples.

In a FI system convective transport yields a pdiahelocity profile with molecules at the tube Veal
having speed zero and those at the center haviiwe tthe average velocity. At the same time, the
presence of concentration gradients develops axidlradial diffusion of sample molecules. It hasrbe
reported that in FI systems of practical interagtal molecular diffusion has almost no influenaethe
overall dispersion, but radial diffusion is the mabntributor. For a pump proving a net flow of ¢min

in a coll of radius a, the average flow velocitgigen by:

q .
V, =———— Equation 1)
® e0r@&?)
At a point at distance r from the center, the flalocity is described by:

2
v(r)=201V, EEl—%j Equation 2)

It is very difficult, if not impossible, to correfa the experimentally obtained response curve thith
actual spatial mass distribution of the system.sTisi a consequence of the selected method of
measurement, which fixes spatially and tempordléypgoint of detection. Under these circumstanasg, a
event occurred before the detection point is ierfrom the response curve profile. Therefore, this
detection approach is a powerful tool for predigtiesponse curves, but ignores the processes ¢etdin
the generation of such response. A Fl system using acid as the carrier solution, water as thjedted
sample and a digital conductimeter with a couplevioés at both ends of the carrier stream detesty
used to follow the radial mass distribution of #aenple zone.

R

..... b
MELE =

| Ub

Figure 21 : FIA manifold for continuously monitoring.
P = pump; | = loop; L = reactor; W=waste; A, B =tefgion points. Punctual detection: suitable detect
in point B; integrated detection: Pt wires locaééghoints A-B.

When the water sample is injected, it acts as ekbig disc, and no electric conductance is measuxsd
convective transport and diffusion gradient fortes water sample to be released from the wallssiogu
a reduction of the blocking area and allowing elecaturrent to flow, conductivity values differefiom
zero are measured. Figure 22 shows the charaitexistductivity curve obtained by such a system.

" /

Figure 22 : Characteristic conductivity curve[1]
Original CD++ Implementation
[17] As mentioned, it is impossible to analyze the ildlabehavior of the changes in the mass

distribution profile. Therefore, we decided to buih Cell-DEVS model describing the integrated
conductivity flow-injection system (ICM) in detailn this way, the internal complex behavior can be
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analyzed by studying the simulated results. The ISfgtem consists of a 0.025 cm radius tube, a 10.75
cm loop and a 9,25 reactor coil . We assumed tta tobe length of the tube to be of 20cm. For this
system, a cell space of 25 rows and 200 columnsdefised, each cell representing a 0.001 x 0.1cmn of
half tube section. Row 0 represents the centehetube and row 24 the section of the tube touchgg
walls and the value of each cell will representritigc acid concentration.

Tube wall

Row 24

Center . Row O

Tube wall

Figure 23 : Correspondence between the cell-spaard the actual tube
Figure 23 shows in light gray a tube section regméng a cell. This is a longitudinal cut of thé¢u The
final aim is to build a 3 dimensional space repnéag a cylindrical section of the tube, but institiase
each cell represent a flat section.

To deal with convective transport and radial difumsat the same time, the model reacts in two ghase
transport and diffusion. The local computing fuantisimulates the transport phase, and all cells are
connected to an external generator sending an ,ewith triggers the diffusion phase. The model is
built as a coupled DEVS model with two componeat<ell-DEVS (named fia) representing the tube,
and an atomic model (named generator). The gemenagone output port (out) to send the diffusion-
triggering event. This port is mapped to the diéfusput port of the fia model (line 2). This meanis
output events sent through the out port will beeied as external events by the fia model throtgh t
diffuse port.

00 [Top]

01 components : fia generator@ConstGenerator
02 link : out@generator diffuse@fia

03

04 [generator]

05 frecuency : 00:00:00:014

Figure 24 : Components of the DEVS model

Equation 3 defines the frequency of diffuse eventss equation computes the characteristic distance
particle of a given solution of diffusion coefficiec will travel in dt seconds.

ds =+/2[¢ [dlt (Equation 3)

Solving the equation for ¢ = 3,5 x T0cm/s and ds = 0.001 cm, we obtain a dt of 14msu¥ée for the
ds value the cell height to find out how long ituatake for two cells to diffuse homogeneously. b
not take into account the cell width because aliffiision can be ignored.

05 [fia]

06 in : diffuse

07 width : 200

08 height : 25

09 delay : inertial

10 border : nowrapped

11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)
13 neighbors : fia(1,-1) fia(1,0) fia(1,1)
14 localtransition : transport

Figure 25 : Definition of the FIA coupled cell modé

Figure 25 shows the definition of the parameterstifie coupled Cell-DEVS fia. Line 6 defines the
diffuse input port, and lines 7 and 8 define thi ggace dimensions. Line 9 sets the cell delpe tip
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inertial. An inertial delay cell that has a schedifuture value f will preempt this value if upaceiving
an external event and evaluating the local transitules a new future valugwith f # fy,is obtained. In
this case, fwill be scheduled as the future value with a gidetay d. Line 10 defines non-wrapped
borders and lines 11 to 13 define a cell’'s neighbod shape. Finally, line 14 defines the sets dlcall
transition function rules, which is defined in Fig26.

18 [transport]

19rule: {(0,-1)}{0.1/(22.57878 * (1 - pow
/0.000625 )) * 1000 } { cellpos(1) =0}

20rule:{0.8}{0.1/(22.57878 * ( 1 - power(
0.000625)) * 1000 } { cellpos(1) =0}

er( cellPos(0) * 0.001 + 0.0005, 2)

cellPos(0) * 0.001 + 0.0005 , 2) /

Figure 26 : The local transition rules

The convective transport has been arbitrarily lefimed in the direction of increasing column valuso
that in visual representations the carrier willseen flowing from left to right. Being this the eas local
transition rule for the transport phase shouldasetll’s value to the current value of its (0,-Eighbor
cell. The rate at which this is done depends onviiecity of the flow at the cell, which, as memisal
before, has its maximum at the center of the tultedecreases towards its walls. This is statelarfitst
transport rule in line 19. The three componentheflocal transition rule are:

Value: {(,-1)} /[The value of the cell’s left neighb or

Delay: {0.1/(22.57878 * ( 1 - power( cellPos(0) * 0 .001 +0.0005, 2)
/0.000625 )) * 1000 }

Condition: { cellpos(1) =0}

Figure 27 shows the radial diffusion rules. Fared with valid top and bottom neighbors, the dsffan
rule states that the new cell value will be therage of the three cells. This is the case of theiruline
22. A delay of 1 ms was chosen. Though a 0 ms detayld be more appropriate, this is still not
supported in the version of NCD++ for which the mbdas written. The other three rules in lines 88 a
24 cover the special case of top and border cBlisse cells do not have both, a valid top and botto
neighbor so instead of using three cells to olttaéraverage, only two are used.

21 [diffusion]

22 rule : { ((-1,0) + (0,0) + (1,0)) / 3} 1 {cell
23 rule : { ((-1,0) + (0,0)) / 2} 1 { cellpos(0) !
24 rule : { ((0,0) + (1,0))/ 2} 1 {cellpos(0) =

pos(0) = 0 AND cellpos(0) != 24}
=0 AND cellpos(0) =24}
0 AND cellpos(0) =24}

Figure 27 : Radial diffusion rules.

So far we have shown the diffusion rule, but weehast yet defined that this ruled should be eveliat
when an external event is received through theiskiffinput port. Figure 28 shows the statementditiiat
the fia model diffuse input port to a cell's diffusnput port (line 27) and set the diffusion rutekte
evaluated upon the arrival of an external everttutgh this port (line 28).

[fia]
27 link : diffuse diffuse@fia(x,y)
28 PortInTransition : diffuse@fia(x,y) diffusion

Figure 28 : External coupling of the FIA Cell-DEVSmodel.

The described model was run for 10s and the sfatieeowhole cell space was logged every 100ms. A
graphical representation of the model at fiveed#ht stages is shown in Figure 29. The loggedtsesu

were also used to draw the conductivity curve.

To obtain the conductivity of the whole system, dweided the cell space in axial segments, calcdlate

the resistance of each, and assumed the wholdamsisto be the result of combining all segments in
serial mode. We took each segment to be a colunelisfand calculated its resistance.

Figure 29 : Different ékeéutic;ﬁ stages of the FlAnodel.
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On figure 29: (1) At time O the sample (white), leen injected. The other half of the tube contties
carrier solution (dark gray). (2,3,4) The conveetivansport makes the sample disperse faster at the
middle of the tube than near the walls. (5) Theltube now contains the carrier solution only.

New CD++ Implementation
The following is the FIA model simplified as we didwith previous models, introducing the FIA

function into CD++. As we can see, on this new ienpéntation, we have not the attached models and the
rules were simplified with the use of the interR&A function.

1) [Top]

2) components : fia

3) [fia]

4) type: cell

5) dim:(20,80)

6) delay: inertial

7) defaultDelayTime : 1

8) border: nowrapped

9) neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
10) neighbors : fia(0,-1) fia(0,0) fia(0,1)
11) neighbors : fia(1,-1) fia(1,0) fia(1,1)
12) initialvalue : 0.8

13) initialcellsvalue : newfia5x20.val
14) localtransition : fia-rule

15) [fia-rule]
16) rule : { getArg(cellpos(0)*100000+cellpos(1)*100+8) }

setArg(cellpos(0)*100000+cellpos(1)*100+0,(0,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+1,(1,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+2,(-1,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+3,(0,-1))+
setArg(cellpos(0)*100000+cellpos(1)*100+4,time)+
setArg(cellpos(0)*100000+cellpos(1)*100+5,11)+
setArg(cellpos(0)*100000+cellpos(1)*100+6,80)+
setArg(cellpos(0)*100000+cellpos(1)*100+7,20) +
setArg(cellpos(0)*100000+cellpos(1)*100+10,0) +
setArg(cellpos(0)*100000+cellpos(1)*100+11,0) +
setArg(cellpos(0)*100000+cellpos(1)*100+8, FlA(cel Ipos(0), cellpos(1)))+
getArg(cellpos(0)*100000+cellpos(1)*100+9)

}
{t}

Line 1 and 2defines the Cell-DEVS model fia.
Line 3 describes the model. Lirkeindicates CD++ that is a cellular model.
Line 5 defines the dimension of the cellular space. Os tiaise we have a 2d cellular spaces of 20x80
cells. Line6 defined the delay type of each cell, which igtiaéon this case.
Line 7 defined the default delay time on 1 millisecond.
Line 8 defines the border type no wrapped, so the fundfié\ has an special behavior on borders (that's
why FIA function receives the dimension as arguménand 7).
Lines9 throughl1 define the relative positions of the neighbors.
Line 12 defines de default value of each cell to startsiheulation, which is 0.8.
Line 13indicates CD++ the file with the initial values.tiis case, some cells are specified with a 0 value
which represent the injected sample on the tubéhtoFIA analysis.
Line 14 defines the name of the rules behavior section.
On line 16 we have the first (and unique) rule of the modsing the FIA function, which receives 10
arguments:
e The current value of the analyzed cell
e The current value of three of the neighbors, whach used on the computation of the new
concentration of sample on each cell.
e The simulation time to determine if diffusion otransport activity action is required.
e The diffusion interval in use.
e Then we have two arguments for the dimension otétlespace.
e Anindicator (not used on this work) to force ddfon at time 0 (when the simulation starts).
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« Anindicator to use a different diffusion techniqtiee average of the neighbors) not used on this
work.
An example of the cells liquid concentration valgeserated by a simulation without quantum is sttbwe
above.
Line : 10252 - Time: 00:00:00:000

0 1 2 3 4
o mmmmmmcmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeee e
0| 0.00000 0.00000 0.00000 0.000 00 0.00000
1] 0.00000 0.00000 0.00000 0.000 00 0.00000
2| 0.00000 0.00000 0.00000 0.000 00 0.00000
3| 0.00000 0.00000 0.00000 0.000 00 0.00000
4| 0.00000 0.00000 0.00000 0.000 00 0.00000
5/ 0.00000 0.00000 0.00000 0.000 00 0.00000
6| 0.00000 0.00000 0.00000 0.000 00 0.00000
7] 0.00000 0.00000 0.00000 0.000 00 0.00000
8] 0.00000 0.00000 0.00000 0.000 00 0.00000
9] 0.00000 0.00000 0.00000 0.000 00 0.00000
10| 0.00000 0.00000 0.00000 0.000 00 0.00000
11| 0.00000 0.00000 0.00000 0.000 00 0.00000
12| 0.00000 0.00000 0.00000 0.000 00 0.00000
13| 0.00000 0.00000 0.00000 0.000 00 0.00000
14| 0.00000 0.00000 0.00000 0.000 00 0.00000
15| 0.00000 0.00000 0.00000 0.000 00 0.00000
16/ 0.00000 0.00000 0.00000 0.000 00 0.00000
17] 0.00000 0.00000 0.00000 0.000 00 0.00000
18| 0.00000 0.00000 0.00000 0.000 00 0.00000
19| 0.00000 0.00000 0.00000 0.000 00 0.00000

Line : 76641 - Time: 00:00:00:049

0] 0.80000 0.80000 0.80000 0.800 00 0.80000
1] 0.80000 0.80000 0.80000 0.800 00 0.80000
2| 0.80000 0.80000 0.80000 0.800 00 0.80000
3] 0.80000 0.80000 0.80000 0.800 00 0.80000
4] 0.80000 0.80000 0.80000 0.800 00 0.80000
5/ 0.80000 0.80000 0.80000 0.800 00 0.80000
6/ 0.80000 0.80000 0.80000 0.800 00 0.80000
7] 0.80000 0.80000 0.80000 0.800 00 0.80000
8| 0.80000 0.80000 0.80000 0.800 00 0.60015
9] 0.80000 0.80000 0.80000 0.800 00 0.71787
10| 0.80000 0.80000 0.80000 0.800 00 0.75015
11| 0.80000 0.80000 0.78841 0.738 59 0.69308
12| 0.78933 0.64040 0.59852 0.541 23 0.45985
13| 0.79012 0.36580 0.32702 0.273 98 0.20850
14| 0.80000 0.39574 0.36884 0.263 94  0.14100
15| 0.80000 0.55054 0.55054 0.272 40 0.18925
16| 0.51717 0.70572 0.60606 0.255 89 0.17778
17| 0.00000 0.71111 0.33524 0.083 81 0.08381
18| 0.80000 0.80000 0.00000 0.000 00 0.00000
19| 0.00000 0.00000 0.00000 0.000 00 0.00000

Line : 8357284 - Time: 00:00:05:000

0| 0.80000 0.80000 0.80000 0.800 00 0.80000
1] 0.80000 0.80000 0.80000 0.800 00 0.80000
2| 0.80000 0.80000 0.80000 0.800 00 0.80000
3] 0.80000 0.80000 0.80000 0.800 00 0.80000
4] 0.80000 0.80000 0.80000 0.800 00 0.80000
5/ 0.80000 0.80000 0.80000 0.800 00 0.80000
6] 0.80000 0.80000 0.80000 0.800 00 0.80000
7] 0.80000 0.80000 0.80000 0.800 00 0.80000
8| 0.80000 0.80000 0.80000 0.800 00 0.80000
9| 0.80000 0.80000 0.80000 0.800 00 0.80000
10| 0.80000 0.80000 0.80000 0.800 00 0.80000
11| 0.80000 0.80000 0.80000 0.800 00 0.80000
12| 0.80000 0.80000 0.80000 0.800 00 0.80000
13| 0.80000 0.80000 0.80000 0.800 00 0.80000
14| 0.80000 0.80000 0.80000 0.800 00 0.80000
15| 0.80000 0.80000 0.80000 0.699 64  0.80000
16| 0.51717 0.80000 0.65051 0.509 09 0.65051
17| 0.00000 0.80000 0.37714 0.243 81 0.37714
18| 0.80000 0.80000 0.00000 0.000 00 0.00000
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19| 0.00000 0.00000 0.00000 0.000 00 0.00000

Implementation for Q-DEVS

This is the Adaptive Quantization implementationtfee FIA model.
The function used for local updating is the inveigaction of the original (FIA). This implementatias
similar to the Heart and Watershed implementattmwsd before.

%Modelo FIA implementado con Q-DEVS
O ——

%NO cuantificable x simulacion. Cuantificable inter namente
%con parametro 12 de la funcion FIAINV
o
1 [Top]

2 components : fia

3 [fig]

4 type: cell

5 dim: (20,80)

6  %width: 20

7  %bheight: 5

8 delay: inertial

9  defaultDelayTime : 1

10 border: nowrapped

11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)
13 neighbors : fia(1,-1) fia(1,0) fia(1,1)
14 initialvalue : 0.8

15 initialcellsvalue : newfia5x20.val

16 localtransition : fia-rule

17 [fia-rule]
18 rule : { getArg(cellpos(0)*100000+cellpos(1)*100+13 )}

setArg(cellpos(0)*100000+cellpos(1)*100+0,(0,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+1,(1,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+2,(-1,0))+
setArg(cellpos(0)*100000+cellpos(1)*100+3,(0,-1))+
setArg(cellpos(0)*100000+cellpos(1)*100+4,time)+
setArg(cellpos(0)*100000+cellpos(1)*100+5,11)+
setArg(cellpos(0)*100000+cellpos(1)*100+6,80)+
setArg(cellpos(0)*100000+cellpos(1)*100+7,20) +
setArg(cellpos(0)*100000+cellpos(1)*100+10,0) +
setArg(cellpos(0)*100000+cellpos(1)*100+11,0) +
setArg(cellpos(0)*100000+cellpos(1)*100+12,0.7) +
FIAINV(cellpos(0), cellpos(1))

}

{t}

The FIAINV function is called with the same argurtgeaf the FIA function plus an additional argument,
which is the quantum value, used internally byfthrection (0.7 on this example).

The rule is first setting all the arguments with getArg function and calling the FIAINV functiowhich
returns the delay for this calculation. Finally tpetArg function is called to retrieve the new localue

for the cell ( getArg( x..y..13) which retrievewet13' argument value (which is the calculated value of
sample concentration) for the cell x:y ).

An example of the cells sample concentration valyeiserated by a simulation with quantum 0.7 is

showed above.
Line : 10252 - Time: 00:00:00:000

0 1 2 3 4

R

0] 0.00000 0.00000 0.00000 0.000 00 0.00000
1] 0.00000 0.00000 0.00000 0.000 00 0.00000
2| 0.00000 0.00000 0.00000 0.000 00 0.00000
3| 0.00000 0.00000 0.00000 0.000 00 0.00000
4] 0.00000 0.00000 0.00000 0.000 00 0.00000
5/ 0.00000 0.00000 0.00000 0.000 00 0.00000
6] 0.00000 0.00000 0.00000 0.000 00 0.00000
7] 0.00000 0.00000 0.00000 0.000 00 0.00000
8| 0.00000 0.00000 0.00000 0.000 00 0.00000
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9] 0.00000 0.00000 0.00000 0.000 00 0.00000
10| 0.00000 0.00000 0.00000 0.000 00 0.00000
11| 0.00000 0.00000 0.00000 0.000 00 0.00000
12| 0.00000 0.00000 0.00000 0.000 00 0.00000
13| 0.00000 0.00000 0.00000 0.000 00 0.00000
14| 0.00000 0.00000 0.00000 0.000 00 0.00000
15| 0.00000 0.00000 0.00000 0.000 00 0.00000
16/ 0.00000 0.00000 0.00000 0.000 00 0.00000
17] 0.00000 0.00000 0.00000 0.000 00 0.00000
18/ 0.00000 0.00000 0.00000 0.000 00 0.00000
19| 0.00000 0.00000 0.00000 0.000 00 0.00000

Line : 75746 - Time: 00:00:00:049

0] 0.80000 0.80000 0.80000 0.800 00 0.80000
1| 0.80000 0.80000 0.80000 0.800 00 0.80000
2| 0.80000 0.80000 0.80000 0.800 00 0.80000
3] 0.80000 0.80000 0.80000 0.800 00 0.80000
4] 0.80000 0.80000 0.80000 0.800 00 0.80000
5] 0.80000 0.80000 0.80000 0.800 00 0.80000
6] 0.80000 0.80000 0.80000 0.800 00 0.80000
7] 0.80000 0.80000 0.80000 0.497 78 0.49778
8| 0.00000 0.00000 0.00000 0.000 00 0.00000
9] 0.56140 0.56140 0.00000 0.000 00 0.00000
10 0.80000 0.80000 0.55873 0.558 73 0.55873
11 0.80000 0.80000 0.51014 0.510 14 0.00000
12| 0.51200 0.51200 0.00000 0.000 00 0.00000
13| 0.00000 0.00000 0.00000 0.000 00 0.00000
14| 0.80000 0.80000 0.80000 0.800 00 0.80000
15| 0.00000 0.00000 0.00000 0.000 00 0.00000
16| 0.26667 0.26667 0.26667 0.266 67 0.00000
17] 0.00000 0.00000 0.00000 0.000 00 0.00000
18/ 0.80000 0.80000 0.80000 0.800 00 0.80000
19| 0.00000 0.00000 0.00000 0.000 00 0.00000

Line : 6182722 - Time: 00:00:05:000

0| 0.80000 0.80000 0.80000 0.800 00 0.80000
1] 0.80000 0.80000 0.80000 0.800 00 0.80000
2| 0.80000 0.80000 0.80000 0.800 00 0.80000
3] 0.80000 0.80000 0.80000 0.800 00 0.80000
4] 0.80000 0.80000 0.80000 0.800 00 0.80000
5/ 0.80000 0.80000 0.80000 0.800 00 0.80000
6] 0.80000 0.80000 0.80000 0.800 00 0.80000
7] 0.80000 0.80000 0.80000 0.800 00 0.49778
8| 0.00000 0.00000 0.00000 0.000 00 0.00000
9| 0.80000 0.56140 0.00000 0.000 00 0.00000
10| 0.80000 0.80000 0.80000 0.558 73 0.55873
11| 0.80000 0.80000 0.80000 0.510 14  0.00000
12| 0.80000 0.51200 0.00000 0.000 00 0.00000
13| 0.00000 0.00000 0.00000 0.000 00 0.00000
14| 0.80000 0.80000 0.80000 0.800 00 0.80000
15| 0.00000 0.00000 0.00000 0.000 00 0.00000
16| 0.26667 0.26667 0.26667 0.266 67 0.26667
17| 0.00000 0.00000 0.00000 0.000 00 0.00000
18| 0.80000 0.80000 0.80000 0.800 00 0.80000
19| 0.00000 0.00000 0.00000 0.000 00 0.00000

7 Simulation Analysis

This section shows the results of the differentuation tests made on each of the three analyzetéisio
The error, time and messages are analyzed witbrdiff quantums types, techniques and values taat ar
also described on next sections.

7.1 Simulations combiations description

Large simulations experiments and the results pfyapg the different quantum techniques and types a
showed.
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All the different combinations of quantum types atgthniques were tested. Most representative
guantum values where selected for each model. s€leetion was made after several tries with differe
values for each model. For dynamic strategies 12amdost representative ratios where used as well.
The analyzed combinations were:
¢ Quantum Standard.
¢ Quantum Standard with dynamic quantum strategy 1.
e Quantum Standard with dynamic quantum strategy 2.
e Quantum Hysteresis.
¢ Quantum Hysteresis with dynamic quantum strategy 1
¢ Quantum Hysteresis with dynamic quantum strategy 2
« Adaptive Quantization (Q-DEVS)
* Generalized Discrete Event Simulation (GDEVS)
* Generalized Discrete Event Simulation (GDEVS) v@tandard quantum.
e Generalized Discrete Event Simulation (GDEVS) witBtandard and dynamic quantum
strategy 1.
e Generalized Discrete Event Simulation (GDEVS) witBtandard and dynamic quantum
strategy 2.
e Generalized Discrete Event Simulation (GDEVS) vidtysteresis quantum.
e Generalized Discrete Event Simulation (GDEVS) witlysteresis and dynamic quantum
strategy 1.
e Generalized Discrete Event Simulation (GDEVS) wittysteresis and dynamic quantum
strategy 2.

In the next sections, the simulation results oheaodel with its quantum combinations are showed.

7.2 Heart Model

The Heart model was tested using the followingdetk quantums types and values, showed on the tree
Figure 32 below:

0.05
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Strategy 2

=
PRV
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Figure 32. Quantum types and techniques used withéfrt model
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GDEVS with quantum is showed with “.....” lines inder to indicate that there was no necessary to test
that combination, but was done and some differesilts were obtained.

The values showed on the dynamic quantum are ffezeatit ratios used for that quantums types.

Figure 32 shows the values used with Cell-DEVS, @BE&nd Q-DEVS mechanisms.

Standard and Hysteresis quantum were analyzed alitlthe specified values and combination of
dynamic strategy 1 and 2 and non-dynamic as well.

Next figure (Figure 33) shows simulation exampléshe graphical output with the quantum type and
values used. This graphics are a subset of alsithelations made and were drawn using the graphcell
toll.

No Quantum Quantum Standard 20
Messages: Y= 390.000, All=2.012.454 Messages: Y= 475, All= 1.622.929
Abs Error: 196829, Relative Error: 7879

Quantum Standard 1 Quantum Q-DEVS 1

Messages: Y= 6075, All= 1.628.529 Messages: Y= 6075, All= 31.401

Abs Error: 7674, Relative Error: 337 Abs Error: 38367, Relative Error: 1686
NGO+ GalCo

- o | CrTERTpen

I
N\
) |

N\

\
\,
\,
\,

.|
-
-
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Quantum Standard 8 GDEVS
Messages: Y= 1125, All= 1.623.579 Messages: Y= 2075, All= 10761
Abs Error: 69355, Relative Error: 3020 Abs Error: 1.388.980, Relative Error; 31912

Figure 33. Heart model result simulation examples

On the above figures, different graphical outputegations can be seen with different (less) graghic
precision because of quantization. Lines with “.aré showed when data is not available because of
quantums discretization (a few values every ceamount of time is showed). On the first cell otlea
graph the dots lines were over drawn (with tenglelntes) to show the approximation made when
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different quantum techniques are in use. For itgaon the quantum standard 20 figure, cell 0 0 was
overdrawed with lines (the other cells not, so ddiges are showed).

Error analysis
On this section, the error is analyzed for eachntjua value, type and combinations of them for Cell-
DEVS, Q-DEVS and GDEVS formalisms.
The analysis is based on the error analysis, wivih calculated comparing the values at each tirtie wi
the Heart Cell-DEVS simulation without quantum {tlsour base case for the result comparisonseof th
different techniques).
The absolute error was calculated as follows:
Absolute error at time t for the cell i =;(s q;)
Where

St is the value of the Cell-DEVS simulation withoutagntum of the cell i at time t

g is the value of the quantized Cell-DEVS simulatidrihe cell i at time t
Absolute error at time t for all the cellsXE-; , (S:—qy) /n
Where:

n is the total number of cells (n = x *y if thellular space of the model is defined as x*y cglls
The accumulated absolute error of the completelation = X -5 0 ( Zi=1.n(St—0y) )/n
Where:

i is the I" cell.

0 is the programmed ending simulation time.

The relative error was calculated as follows:
Relative error at time t for the cell i =;(s qy) / S
Where
St is the value of the Cell-DEVS simulation withoutagntum of the cell i at time t
g is the value of the quantized Cell-DEVS simulatidrihe cell i at time t
Relative error at time t for all the cellsXEiz; o ((St— 0y /St )/ n
Where:
n is the total number of cells (n = x *y if thellular space of the model is defined as x*y cglls
The accumulated relative error of the complete &tion =2 o 10 (Xiz1.n ((St—dy) /S0 )/ n
Where:
iis the I cell.
0 is the programmed ending simulation time.
Absolute Error analysis

Modelo del Corazén - DEVS - Analisis del Error Ahgo
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Figure 34. Cell-DEVS Heart model Absolute Error
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This figure shows the accumulated absolute err@ach Heart Cell-DEVS simulation with the different
guantums.
The references are:

DEVS is the non quantified simulation.

DEVS-q is the simulation with standard quantum.

DEVS-g-y is the simulation with standard quantumd dynamic ratio strategy 1.

DEVS-g+Y is the simulation with standard quantumd dynamic ratio strategy 2.

DEVS+Q is the simulation with quantum hysteresis.

DEVS+Q-y is the simulation with quantum hysteresisl dynamic ratio strategy 1.

DEVS+Q+Y is the simulation with quantum hysteresisl dynamic ratio strategy 2.
The value on the right of the “y” or “Y” strateggdicator is the ratio used for the dynamic quantum.
As can be seen on the figure, the lowest absolute was obtained with the dynamic quantum strategy
with ratio 0.9 (Hysteresis or Standard): DEVS+Q%@nd DEVS-g-y0.9. The line of the standard can’t
be seen because of overlapping with the Hysteraslgh the same quantum but strategy 2, the egor i
the biggest of this set of tests. No differences ba observed for this model between standard and
hysteresis quantums. This is reasonable, becaude afature of Hysteresis quantum, which differs of
standard when direction changes are present atkismodel (Heart) there are no significant directi
changes (only one at value +24 aprox as we caarsé®e figure of the Heart model).

Modelo del Corazén - QDEVS - Andlisis del Error Ahgo
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Figure 35. Q-DEVS Heart model Absolute Error

On Figure 35 (with Adaptive Quantization Q-DEVS) wan see that absolute error is the same as
standard quantization (DEVS-q line on Figure 34 lstance, with quantum 8, both absolute errors
(standard and adaptive) are 69355. This model wailts the same quantum values and with the same
function of Cell-DEVS. This model has no dependesdietween neighbors values and that is the reason
because the error has no difference with resped¢hdostandard quantum. The accumulated error is
produced because of the individual cell differene#th the non quantified model. The difference afedi

has no impact on the other cells (the neighborgplige of the simplification mentioned before (no
dependency with the neighbors).

As we can see, with internal quantum value “0” tirischanism works exactly as the original model
without quantum. That is because with quantum ¥ inverse function of the original one makes no
difference and returns the default delay and thd melue for the cell without making any additional
calculation or changes.
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Modelo del Corazén - GDEVS - Analisis del Error Ahgo
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Figure 36. GDEVS Heart model Absolute Error

1000000

With GDEVS, error is bigger, on the order of 1.@MM. Also GDEVS quantized simulations where done
to evaluate behavior. GDEVS with quantum Hysterésigl Standard) 20 and dynamic strategy 1 ratio
0.9 (GDEVS+Q-y0.9 and GDEVS-q-y0.9) has some entiaent of the absolute error (remember that
this is a GDEVS model approximated with polynonfiaictions where quantum 0 has already an error
within). On this case, if we make a more compled ancurate polynomial approximation, the error can
be reduced while the model design will be more dempand hard to evaluate. E.g. if the model has n-
variations in the simulation and we define n or@grolynomials (with all the constant values) foclea
instant we will have no error with respect to tigimal model but the design will be very complexd
large, because we’ll have n polynomials where thésnumber of different values of the model), which
looks as a cellular automata with n-states (oneeémh value). In the other hand, if we define antg
polynomial, the model design will be very simplét lthe incurred error will be high (because one @alu
will represent the complete model). On this casehaee 12 polynomials. On the next analyzed model
(Watershed, which has only one order 1 polinomykeweerimented this behavior.

Relative Error analysis

The relative error is analyzed for each simulatiod the figures shows the incurred error with each
quantum value.
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Modelo del Corazén - DEVS - Analisis del Error Rela
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Figure 37. Cell-DEVS Heart model Relative Error

The relative error follows the same tendency of #fisolute error except for quantum 20 dynamic
strategy 2 ratio 0.5 (DEVS+Q+Y0.5), which in thiase, the relative error is lower than strategy 1
(yellow line).

Next Figure 38 shows the relative error of Q-DEV#ategy.

Modelo del Corazén - QDEVS - Analisis del Error &@lo
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Figure 38. Q-DEVS Heart model Relative Error

On figure 38 (Q-DEVS relative error) we have simid@mparisons done for absolute error. The values
are the same with Q-DEVS and with standard quaniiis is because the model was implemented with
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no dependency of the neighbors to calculate thel lealue. On others models with interaction of the
different cells this can be different and Q-DEVBigiations will have different results.
Next figure 39 shows the GDEVS relative error asisly

Modelo del Corazén - GDEVS - Analisis del Error &&lo
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Figure 39. GDEVS Heart model Relative Error

With GDEVS, relative error is bigger than other hoats but there we have a better result with GDEVS
quantified with dynamic quantum strategy 1 rati®.0The GDEVS simulation with no quantum has
already an error within because of polinomy appr@tion. Adding dynamic quantum strategy 1 ratio 0.9
the relative error was smaller because of a smdiffarence with the original numbers when quatritify
the GDEVS values (bigger values produced by GDEW§rmmials were minimized with the dynamic
quantum). This was an exceptional and very padicudsult on this specific model.

Messages analysis

Message analysis was made comparing the numberepérgted messages on the simulations
(considering the simulation end time of the smadienulation, because with some quantum values and
types, the simulation can finish before the progred ending time and the comparison will be notdvali

if we don't consider the ending time of the smaller

The analyzed messages are the total number of gess¢this includes initialization, internal, extakn
output and done messages). The output messagesmayzed separately.

Total Messages analysis
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Modelo del Corazén - DEVS - Analisis de MensajeSTROES
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Figure 40. Cell-DEVS Heart model Total Messages

The total number of messages with this type of tirarhas a maximum reduction of 20% compared with
the simulation without quantum. This is because shaulation continues instead of no output is
generated. That's the reason because we will apallye output messages separated. Those are the
messages to be highly reduced while quantifyindn whie different combinations of quantum types and
mechanisms.

Modelo del Corazén - QDEVS - Andlisis de MensajesTALES
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Figure 41. Q-DEVS Heart model Total Messages

On this case (Figure 41), with adaptive quantizgtithe total number of messages was reduced
significantly. The maximum reduction with quantuf i2s 99.87%. With this technique, the simulation
will be automatically programmed on the next timeatue change its region and that is the advarmége
this quantum technique, because the model is na#rgéng internal and external messages every x ms,
it's only generating messages when quantum redgiamg@es takes place. This simulation is not doing a
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step-by-step simulation advance time as in thedstahCell-DEVS quantization and that’s the reason
because the biggest message number reduction.
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Figure 42. GDEVS Heart model Total Messages
In this case, with GDEVS methodology, the numbertatl messages are also significantly reduced
(compared with the original simulation of Cell-DEV®ho has 2.012.454 messages and here we have
less than 11.000 total messages).
The message reduction with GDEVS (with no quantisnpbout 99.4%. With quantized GDEVS,
reduction is a little better (99.6%). Here alsce tieduction is significantly because the modelads n

generating events every fixed x ms, it's generatimggsages only when the polynomi changes it's galue
depending on the state of the cells.

Output Messages analysis
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Figure 43. Cell-DEVS Heart model Output Messages

Page: 53/ 86



Complex Models Quantification Analysis Leandro San Miguel

As we can se on figure 43, output messages areeddiignificantly with quantization, to the extrenfe
having 225 output messages on the quantified mmu$l390.000 output messages on the non quantified
model (99.95% of reduction). Of course, while mgssare reduced, potential error is incurred. Here
there is a significant difference between dynantiategy 1 ratio 0.9 and the other quantum values
(reduction it's a 76% lower with dynamic strategyatio 0.9). On the other hand, while analyzing the
error, we have a lower error with dynamic stratéggtio 0.9 (more messages but lower error).
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Figure 44. Q-DEVS Heart model Output Messages
With adaptive quantization (Figure 44 Q-DEVS), diffince is not too big as the comparison of total
messages, because output messages are reduced @hithyboth techniques). In the total messages we
have a big difference between Q-DEVS and standaashtgm, but when output messages are analyzed,
both reduces significantly the output messages Uusecsghese are the optimized messages with both
techniques but with Q-DEVS, all messages (outpdterery message) are reduced because the cell next
event time is managed, not only the local updadiiipe cell (like on the standard quantum).
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Figure 45. GDEVS Heart model Output Messages
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In this case (figure 45 GDEVS methodology) the nambf output messages behavior is similar to total
messages behavior (compared with the original sitiari of Cell-DEVS, who has 390.000 output
messages). The message reduction with GDEVS ornitlidut additional quantum) is about 99.47%, but
if we see the quantized GDEVS, reduction is big@er output messages) than with total messages,
because (as mentioned before) output messagesigamiéicantly reduced (about 99.97%) with the
quantization techniques (standard and hysteresmpmed with GDEVS.

Simulation time analysis

This section shows the simulation time analysisadh technique. The analyzed time is the real tirae
simulations takes (from the model loading until Hiulation ended) in terms of CPU usage time. The
time was measured in seconds (without millisecaritlsis analysis is relative to the computer used\C
speed, data BUS, disk, memory, etc.) but all sittarla were made on the same computer to allow valid
time comparisons analysis.
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Figure 46. Cell-DEVS Heart model Processing Time

As we can see on figure 46, the total simulatiometi without quantum with the Cell-DEVS
implementation was 3 minutes 8 seconds. The hast ¢ibtained with standard and hysteresis quantums
(also with all the combinations of dynamic quantymas 2 minutes 40 seconds (14% lower than the
original simulation). The best time was obtainedhwstandard quantum (no dynamic strategies). The
variations are not too significantly with this tedue.
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Tiempo de proceso (segs)

Simulation time with Adaptive quantums (Q-DEVS) lmdut quantum (quantum 0) is bigger (4’ 97, 32%
bigger) than the original model (3’ 8”). When noagtum is used on Q-DEVS we have the same
simulation of the original one, but using Q-DEVS$hrique with quantum 0. When a Q-DEVS quantum
value is specified, the simulation time reducesificantly, up to a 60%. The best time here wasidute

13 seconds, which is a 62% lower of the simulatiore of the original model. The simulation takesreno
time with Q-DEVS quantum 0 because the functiom@e complex than the standard function, because
of additional calculations made with the inversection, but when Q-DEVS quantum value is specified,
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Figure 47. Q-DEVS Heart model Processing Time

the complexity time overhead is insignificant beszathe total time reduction is bigger.
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Figure 48. GDEVS Heart model Processing Time
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On Figure 48 we can see the simulation time of GBEVime is the smallest of all the techniques (less
than 3 seconds). It varies between 2 and 3 secoompared to the 188 seconds of the original Cell-
DEVS simulation. Reduction is more than 99%, wifbE¥/S with or without additional quantum.

The main difference here is that the local compatafunction has a low complexity and the messages
involved are less than the other models (2.000.9@8sages vs. 10.000) and this results on a faster
simulation because of the small number of genenaiessages.

7.3 Watershed Model

The Watershed model was tested using the followaigcted quantums types and values, showed on the
tree figure below (figure 49).

Strategy 0.05
[omame 1<
\A Strategy . 0.9

PV
0.05
v QY
LALEE SO
0.05
35 \ <: Strategy
S : 0.9

Cell-DEVS -
Watershed Strategy | g5
Dynamic :

Strategy ¢

Strategy | 0.0F

Strategy 0.

Figure 49. Quantum types and techniques used with ®#éershed model

The description of this values is the same asenHbart model, but the values are different, adogrtb
this model, which has a lower range of values (timaties using lower quantum values).

This model was tested using the land topology skoam figure 50, which means that all watershed
simulations were originated form this initial statégure 50 shows the initial state of the landobef
watershed events.
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Figure 50. Initial Watershed state
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Figure 51 shows simulation examples of the grapldogput, were we have the status of the land after

10’ of rain. The land surface can be observed ifitergnt simulation strategies and quantums:
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Figure 51. Watershed Result Simulation Examples
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On the above figures, some graphical differencasbeaobserved because of incurred error. The qoantu
type and value, the number of output and total agess and the accumulated relative and absolute erro
is showed for each graph.

Error analysis

This section analyzes the error (absolute andivelatwhich was calculated as showed on the Heart
model (with the same formulas and tools).

Absolute Error analysis
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Figure 52. Cell-DEVS Watershed model Absolute Error

As we can see on figure 52, on this model, the labs@rror is bigger while using dynamic quantum
strategy 2. With dynamic quantum strategy 1 rati® @e've got the lowest absolute error. This is
reasonable here, because this model has interdmtioveen its cells (it is different than the Haarddel,
where all the cells were independent). As we ca&n ggnamic quantums gets better results on thiseiod
(80% less absolute error).
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Modelo Watershed - QDEVS - Andlisis del Error Ahgol
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Figure 53. Q-DEVS Watershed model Absolute Error
On this model, Q-DEVS has not better results tlmmesstandard quantums. For instance, with Q-DEVS
quantum 1.0 we have an absolute error of 559 attdDEVS standard quantum 1.0 we’ve got 259. This
is also because of the non independent cell behaescribed before. With the prior model (the Heart
model) we had the same ratio of error between DBN& Q-DEVS because the cells were independent,
but here, cells has to receive and send waterstagighbors in order to simulate watershed, aral thi
makes the difference on this model using Q-DEVIKEY/S is not interacting with the neighbors while
calculating the next value and delay for a cellause the inverse calculation is not made at future
simulation times with all the future neighbors \edufor each cell while trying to anticipate theugafor a
given quantum, so the value is calculated with™oleighbors values which result on a bigger errbilev
using this type of quantum.
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Figure 54. GDEVS Watershed model Absolute Error
On the GDEVS simulation without quantum, error iik&r to standard quantum (no dynamic) 3.5.
GDEVS with quantum 1.0 and dynamic strategy 1, ddittle lower absolute error than base GDEVS.
This is because the GDEVS simulation without quamhas an error within the model design because of
the polynomi approximation and the quantizatioe @ame effect described on the Heart model).
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Relative Error analysis
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Modelo Watershed - DEVS - Andlisis del Error Relati
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Figure 55. Cell-DEVS Watershed model Relative Error
Relative error is small with dynamic quantum stggté ratio 0.9 for this model (same result we've go
with absolute error).
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Figure 56. Q-DEVS Watershed model Relative Error
Q-DEVS with quantum 0.05 and 1 has a smaller redaéirror considering the important reduction of
messages and simulation time obtained with thisriewe. Here the relative error is about 6 (seeréig
56) and with the standard quantum we’ve got arcu(ske figure 55).

Page: 61/ 86



Complex Models Quantification Analysis

Leandro San Miguel

Modelo Watershed - GDEVS - Analisis del Error Rietat
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Also with GDEVS (without quantum and with quantutnategy 1) we've got similar relative errors
(compared with the standard quantums). With GDEW&eyy 1 relative error is approximately 6 (figure
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Figure 57. GDEVS Watershed model Relative Error

57) as we’ve got with standard quantum (figure 55).

Messages analysis

On this section we can see the output and totasages analysis made for the Watershed model. The

analysis type is the same used for Heart model.

Total Messages analysis

Here are the total number of messages generathdheitdifferent simulations. Important differenoas

be seen with different quantums values and stragegi
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Figure 58. Cell-DEVS Watershed model Total Messages
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With Cell-DEVS quantums, the total number of messagre reduced about 25% (maximum). With big
quantum values for this model (3.5 is a big quanttatue because of the variation of this model is
smaller than 3.5 most times) the number of messageseduced in the same order (25%) because with
the cell interaction the simulation is generatingrenexternal messages to keep the model alive when
quantifying.

On the next graph (figure 59), we will see thattibtal messages are significantly reduced becafuge o
adaptive quantization, which works with a differéathnique more effective for the total number of
messages.
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Figure 59. Q-DEVS Watershed model Total Messages
On figure 59 we can see the result of quantizatiiih the consistent reduction of messages. Ofal tit
1.347.300 messages, with an small quantum val@s)®@e messages were reduced to 245.967 (more
than an 80%). With a quantum value of 1.0, the agss were reduced up to 99%. Of course, the
incurred error is bugger when more messages reghsctie have.
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Figure 60. GDEVS Watershed model Total Messages
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On figure 60, as a difference with the Heart mo@DEVS has more messages than Q-DEVS while no
very significant error differences can be obsetvetdveen them.

Output Messages analysis

The lowest number of output messages was obtaiitbdive Q-DEVS strategy.

With GDEVS, there are more messages than with Q-BEVWid also more than some standard and
hysteresis quantums (except with dynamic stratégyElg., with quantum standard 1.0 (no dynamic
strategy) we have between 743 and 1.188 outputagess With Q-DEVS quantum value 1.0 we have
543 output messages and with GDEVS we have 11.&3Gages.

Of course, as mentioned before, with DEVS, the ragiemessages were incremented because of the
absence of output messages (when no output mesaeg@generated, no events are scheduled for the
evaluated cell and its neighbors and the simulatian stop if there are no events, but automatically
external events are generated to advance the giotukime with the new “-¢” argument added to the
tool.

Figure 61 shows the output messages generated stétidard, hysteresis and dynamic combination
strategies.

Modelo Watershed - DEVS - Andlisis de Mensajes digGt

268800 268800 268800
2451001
2101001
——DEVS
—®-DEVS-q
. TR0 —*— DEVS-q-y0.05
e DEVS-q-y0.9
8 140100 DEVS-g+Y0.05
= 133918 —*—DEVS-q+Y0.9
& —*-DEVS+Q
—— -
E 105100 DEVS+Q-y0.05
94092 —&—DEVS+Q-y0.9
DEVS+Q+Y0.05
-o—
70100 \ DEVS+Q+Y0.¢
35100
279
898 a0z
\lL188
100 : ‘ 8 : S
0,00 0,05 1,00 3,50

Valor de Quantum

Figure 61. Cell-DEVS Watershed model Output Message

On the next graph (figure 62 - Q-DEVS quantizatith® messages are reduced in the same proportion of
the DEVS quantization because we are comparing hHegeOutput messages, which are reduced

significantly with an small quantum value for thisodel (considering that the output messages are
reduced significantly compared with the total mgssa.
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On figure 63 (GDEVS simulation) we can see the outpessages reduction on the same proportion of
the total messages for the GDEVS simulation. OfesuGDEVS has already a big reduction on the total
messages and that reduction involves also the boipssages. On the GDEVS case (as in the Q-DEVS)
no more extra external messages (X) are generatlibe of the working mode of this techniques (both
are not using the CD++ quantization, it uses aerima! quantization on the design of the model).ti@n
Cell-DEVS simulation, we can see that there isgadiiference between total and output messages when
quantifying, because it uses the CD++ generic deatidn, which generates additional messages tp kee
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Figure 62. Q-DEVS Watershed model Output Messages
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Figure 63. GDEVS Watershed model Output Messages

Simulation time analysis
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Simulation time is not significantly reduced witRlEDEVS quantums on this model (130 seconds is the
maximum and 111 is the best time) but with Q-DEVS have (with quantum value 1.0) 8 seconds of
simulation time and with GDEVS between 5 and 7 sdsoNext three figures (figure 64, figure 65 and

figure 66) show the simulation time for the differéechniques and quantum type an values used.
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Figure 64. Cell-DEVS Watershed model Processing Tien
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Figure 65. Q-DEVS Watershed model Processing Time
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Modelo Watershed - GDEVS - Andlisis de Tiempo
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Figure 66. GDEVS Watershed model Processing Time

7.4 FIA Model

For this model, all quantum types and strategiesevanalyzed except for GDEVS, which was not
implemented because of the behavior characterigfitee model. This model has a “translation” and a
“diffusion” function, which alternate the cell vas. The behavior of its cells is not uniform. As wid

see on the function figures, each cell has a camlplelifferent behavior. To implement the GDEVS
technique for this model, we would have needecefind a different polynomi for each cell (but thias
not made on this work).

Figure 67 show the different quantum combinatioseduwith the FIA model.
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Figure 67. Quantum types and techniques used withl& model
On Figure 68 we can see some simulation picturepexified times, after the sample was introduaed o
the tube in order to simulate the flow analysism8ofigures with different quantum values and
techniques are shown and some graphical disturbbe@abserved on the quantized examples.
These are some simulation examples of the grapbigplit:

No Quantum Quantum Standard 0.7 120ms
Initial - time=0, Sample —white- injected Messages: Y= 15.706, All= 7.463.348
Messages: Y= 970.892, All= 8.357.282 Abs Error: 11.732, Relative Error: 82.123

Page: 67 / 86



Complex Models Quantification Analysis Leandro San Miguel
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Figure 68. FIA Result Simulation Examples
Error analysis

With this model a different error behavior can Heserved. E.g., with quantum Hysteresis dynamic
strategy 1 ratio 0.5, at quantum value 0.1 the labserror is 7337 and with the same quantum tyjple w
value 0.7 the error is 567. With a bigger quantuatu® we've got a lower error. This depends on the
values of the simulation, which varies from 0 t8 @nd with the translation function of FIA, withggier
quantum values, intermediate translations are adbitksulting on a lower error because of values
compensation when no translating intermediate walue

Absolute Error analysis

On the next two figures (figure 69 & 70) we can $lee absolute error of the standard and hysteresis
quantums combined with the dynamic strategies bad}DEVS mechanism on the second figure.
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Modelo FIA - DEVS - Analisis del Error Absoluto
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Figure 69. Cell-DEVS FIA model Absolute Error

On figure 69, we can see the higher error genenatttdthe hysteresis dynamic quantum 0.1 compared
with same strategy but with quantum value 0.7. Algth other techniques we have bigger errors also,
like dynamic ratios 0.05 and 0.5 with quantum vaue

Modelo FIA - QDEVS - Andlisis del Error Absoluto
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0,00 0,01 0,10 0,70
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Figure 70. Q-DEVS FIA model Absolute Error
Figure 70 show the absolute error of the Q-DEVS maacsm, which has a better result with smallest
guantums (like quantum value 0.01 were the err86i8).
Relative Error analysis

Figures 71 and 72 illustrates the relative erd@rwe can see, the behavior is quite similar toatheolute
error, except for Q-DEVS technique (figure 72) wére difference of the relative error with quantum
value 0.1 and 0.7 is not so different than the kibserror for same technique and quantum values.
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Modelo FIA - DEVS - Analisis del Error Relativo
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Figure 71. Cell-DEVS FIA model Relative Error

On next figure 72 we can see the relative errar ihQ-DEVS with the difference mentioned beforéhwi
respect to absolute error.

Modelo FIA - QDEVS - Andlisis del Error Relativo
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Figure 72. Q-DEVS FIA model Relative Error
Messages analysis

Quantum hysteresis dynamic strategy 1 ratio 0.5 witantum value 0.1 it has the smaller number of
messages reducing it from 7.000.000 to 4.000.00&ages while incurring on the biggest error.

This difference can be seen on the total messaglysis) not on the output message analysis, where
messages are always reduced when bigger the quastudm the total message analysis, with some
smaller quantums, we have less messages than igilerbquantums, because of internal and external
messages generated also when no output messagedstgd (as mentioned before, when no output
message is generated, an external message is distdinaggenerated to keep the simulation alive and

update the local values).
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Total Messages analysis
Next figure 73 show the total number of message®igeed with the standard and hysteresis quantum

(combined also with dynamic strategies). In thiddelove can see the relation of the number of messag
with the incurred error.
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Figure 73. Cell-DEVS FIA model Total Messages
On this figure (figure 73) the lowest number of sages was obtained with the quantum hysteresis 0.1
dynamic strategy 1 ratio 0.5 On the error figum@stliis quantum type (figure 69 and 71) we cantbat
the error is the biggest, which is consistent whithlower number of messages obtained here.
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Figure 74. Q-DEVS FIA model Total Messages
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This figures show the number of messages for Q-DEMShanism where we can see smaller number of
messages with quantum 0.1 and not with quanturw@ré we have also a bigger error (as showed on

figure 70 and 72). All in all, with Q-DEVS 0.7 wae more messages and higher error.

Output Messages analysis

Like other models, the output messages are redncetligher percentage than total messages.

On figure 75 we can see that the output messageabaut 970.000 without quantum and are reduced up
to 15.700 with quantum value 0.7. There are vammstiacross the different types and strategies but
reductions differences in output messages are et important with 0.7 quantum value. With smaller
quantum values, different techniques has morereifiges, for instance, with quantum 0.01 standawod (n
dynamic strategies) we have 584.000 output messaggwith the same quantum value but quantum

hysteresis with dynamic strategy 2 ratio 0.5 weeh2®4.000 messages (65% less messages).
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Figure 75. Cell-DEVS FIA model Output Messages
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Figure 76. Q-DEVS FIA model Output Messages

Page: 72/ 86



Complex Models Quantification Analysis Leandro San Miguel

This figure (figure 76) show the number of outpugssages for Q-DEVS mechanism. As we can see here
we have an average of the messages generated thigh ®chniques. For example, with Q-DEVS
quantum 0.01 we have 461.000 output messages d@ndhei standard quantums we have a minimum of
204.000 and maximum 584.000.

Simulation time analysis
Next two figures (figure 77 and 78) shows the satioh times for the different techniques.. The
maximum time is about 22 minutes (1307 seconds)tiaadest time is about 19 minutes (1194 seconds)

for the standard and hysteresis quantums and dlfontinutes (960 seconds) for Q-DEVS mechanism.
The best saving is about 25%.
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Figure 77. Cell-DEVS FIA model Processing Time
On next Figure 78 we have the total simulation tiime Q-DEVS mechanism, where we can see that
without quantum we have a very similar process tifh288 seconds for Q-DEVS vs. 1307 on the
standard model) but with quantum we have the lrest (25% less messages).
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Figure 78. Q-DEVS FIA model Processing Time
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8 Model Simulation Conclusions

Model, quantum type and quantum value best performace

The performance is defined as the lower absolutierelative error, lower number of output messages a
lower processing time. The following sections shakes combinations of the most representative result
for each model in terms of performance.

Heart Model

Table 3 shows a selection of the most represestatdsults, in terms of performance (with the
performance connotation defined before) for the rHé4odel. The shadow lines shows the top 2
combinations with the best results for this model.

HEART MODEL Total Output Absolute Error  Relative Error | Simulation time
Messages Messages

NO Quantum 2.010.000 390.000 0 0 188"

Standard MHysteresig

1.0 1.648.000 25.000 777 28 168"

Dynamic Strategy 1

Radio 0.9

Standard / Hysteres

1.0 1.632.604 10.150 15.516 616 167"

Dynamic Strategy 2

Radio 0.9

Standard / Hysteresjs

1.0 1.631.429 8.975 3.828 157 167"

Dynamic Strategy 1

Radio 0.5

Standard 1.0 1.628.529 6.075 7.674 337 164"

Q-DEVS 1.0 31.400 6.075 7.674 337 75"

GDEVS 10.761 2.076 1.388.980 31.913 3"

GDEVS +

Standard / Hysteresjs

20.0 8.836 150 1.026.750 29.726 2"

Dynamic Strategy 1

Radio 0.9

Table 3. Heart model Results Selection

Watershed Model

Table 4 shows a selection of the most represesptatigults for the Watershed Model with the same
performance definition of the Heart model. Here &pest combinations are shadowed because more
combinations (more than the Heart model) with letsults were obtained.

WATERSHED Total Output Absolute Error  Relative Error | Simulation time

MODEL Messages Messages
NO Quantum 1.347.300 268.800

Standard / Hysteres
1.0 1.092.398 13.800 27 0,29 1117
Dynamic Strategy 1
Radio 0.9

Standard / Hysteres
1.0 1.079.243 743 341 3,8 114"
Dynamic Strategy 2
Radio 0.9

Standard / Hysteresjs
3.5 1.078.741 241 8.905 98,3 113"
Dynamic Strategy 2
Radio 0.9
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WATERSHED Total Output Absolute Error | Relative Error | Simulation time
MODEL Messages Messages
Standard / Hysteresjs
1.0 1.079.688 1.188 259 2,8 113"
GDEVS 66.390 11.610 513 5,8 6"
Q-DEVS 1.0 4.956 536 559 4 8"
Q-DEVS 0.05 245.967 26.975 363 6,2 100”
Table 4. Heart model Results Selection
FIA Model

Table 5 has the best selected results for the Fiddé¥l Top 3 best combinations were shadowed
(yellow). As we can see, with Q-DEVS 0.7 we have ofithe best message reduction with ones of the
lower errors for the different quantum combinations

Total Output Absolute Error | Relative Error | Simulation time
Messages Messages
NO Quantum 8.357.282 970.892 1.307”
Standard 0.1 7.507.181 175.495 431 1.212 1.242”
Hysteresis 0.1 7.475.633 131.039 503 1.371 1.260”
Standard 0.1
Dynamic Strategy 1 | 7.451.273 112.366 657 1.630 1.237”
Radio 0.5
Hysteresis 0.1
Dynamic Strategy 1 | 4.650.328 41.511 7.337 19.155 1.243”
Radio 0.5
Q-DEVS 0.1 5.960.167 110.373 759 1.897 977’
Hysteresis 0.7 7.450.086 416 167.063 216.688 1.226"
Q-DEVS 0.7 6.182.720 43.760 1.984 2.346 974"

Table 5. Heart model Results Selection

As we can see, the relative error is bigger tharatisolute error. This is because on this modeldhees

are under 1, which implies a relative error bigten absolute. On the other two models (Heart and
Watershed) values are bigger than 1, that's theorelecause relative error was smaller than alesohut
that models.

Here Quantum Hysteresis dynamic strategy 1 rabch@s reduced significantly the number of messages
while incurred on a bigger error, compared with shene value for quantum standard. Q-DEVS 0.7 has
lower error than Hysteresis 0.7 but some more ngessa

9 General Conclusions and problems to solve

The different quantums techniques were analyzethisnwork and different models were used to make
this analysis. Cell-DEVS formalism was analyzed ematlels with transport and inertial delay as well.
Parallel DEVS formalism and Cell-DEVS parallel extians with quantums were not analyzed on this
work. The modifications made to CD++ were impleneeinbn a version which has no parallel formalism
implemented and needs to be implemented and testdte parallel version.

Next sections shows conclusions and the differeablpms to solve and the impact of them on the
quantization.

Problems to solve using Q-DEVS

When using Q-DEVS, a problem to solve is that Q-3EMorks with a function that is the inverse of the
local update function and this inverse functiorures the delay until next quantum region is actdeve
(and returns also the cell value for that time),jothmeans that no activity will be made until the
programmed time is achieved. The problem is wheellaneeds its neighbors values to determine its ow
value, because the function is calculating the evddw a future time (the time when the value wilhoge

its quantum region) and at the real time (whenutating the future value) neighbors values for eé@cie
are not available, because the neighbors has tbesvaf the real time, not the values of the intdate
and future times that the analyzed cell is caloudat
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For this work, to analyze the behavior of each méple, the models were transformed in order to
minimize the neighbor dependency. For example herHeart model, every cell is updating individually
its value without looking if the neighbors has piesi or negative values (which is done on the real
model, because a cell starts its action potentiemits neighbors has positive values).

Another issue to consider is that if a functionglaet change its value (it returns always the seamhee,
until o Time), the system will loop forever waiting thaetcell changes its value (its region) with a delay
of o as well. To avoid this problem and make possihle @nalysis and comparison of the different
techniques, an additional condition was writtertha inverse functions to avoid this problem: when n
changes are made for a cell on the computatiomefiriverse function, the next value is set with the
current value and the delay is set with the defdalay. No changes is desired after n-steps without
changes where n was set to 1 for this work.

Problems to solve using GDEVS

Like on Q-DEVS, the problem is to create a polyralmpproximation when cells has different behavior.
A possible solution can be to define a specificypomial approximation for each cell. It can be very
difficult and costly to obtain a valid approximatidf cells has different behavior depending on its
neighbors. On the FIA model for example, some cetilsts with the 0 value and others with the 0.8
value. Cells changes its values due to a diffusite and to a transport rule, which means thasdetim
the left side will get value of the right cellsaisport). Also at different times, cells will chanigs value
with an average of their neighbors values (diffa¥idrhe problem is with the different behavior bét
cells, because cells representing the sample dfityenodel, will have a different behavior of thells
that are not close to the sample. If we see thergéed values, to get an acceptable approximatien,
need a polynomial approximation for each cell. E&xample, cell 0 O starts with value 0 on time O &nd
changes to value 0.8 at time t+1 and that is teedhange for that cell. Cells closer to the midues
values 0.5 and they will change its value abruptly0.8 when transport is made, but cells far of the
sample will not change its values. The next figsltews the first 100 values for four different celfshe
FIA model and the need of use different polynonfiiictions to approximate them. On Figure 79 (for
cell 41 3) we can see the effect of the transactibn, which alternate the cell value. That issaample

of the very different behavior of cell 0 0.
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Figure 79. FIA model cell 41:3 variation

It depends on the model how convenient can be desi@DEVS representation. For models with abrupt
changes and non uniform behavior, this techniquebeghard to use, like on the FIA model.

N-arguments problem

On the CD++ version used for this work, the funcsiaused on the models, can receive maximum two
arguments. This will be enhanced on other works @#@++. To develop this work, two alternatives

were used in order to bypass this limitation andtiooie with the quantum analysis. One was using two
composed arguments (packed arguments) for theailaditm functions. This was used on the Heart
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model, which has 5 arguments and most argumenéesalte integers so some packing algorithm can be
applied easily.

On all Q-DEVS implementations and on the Cell-DEW@tershed and FIA models, it's not possible to
pack the arguments easily, because there are ngumants and there are more than two real arguments
so it's not possible to pack them into two arguragesb a new alternative was developed in order to
implement this models. This alternative implemetwt® functions called setArg and getArg, where
setArg sets thé"iargument for the indicated cell and getArg retuhesi" argument for the indicated cell.
This functions works as follows:

To set an argument value: setArg(x*100000+ y*100i
To get an argument value: getArg(x*100000+ y*1Q0+i
Where:

x is the x position of the cell

y is the y position of the cell

i is the argument number

a is the value for the argument
The composition of the x and y values was madeusecthis function was implemented in CD++ which
has the two arguments restriction.
With this two functions, up to 99 arguments canused for internal functions and both (setArg and
getArg) can be used inside the functions and inidadefinition model as well.

X messages with —c argument

When simulating models with small variance or whieantifying simulations, it can occur the simulatio
stops because non-external events are generatedlg8bn stops when no external events are or when
the ending times is achieved).

When using quantum, is common that on some spdaifies no events are generated as a result of the
guantization. One solution to this is to define additional plane to keep the model alive (with this
additional plane varying from 1 to 0 and from Oltdor example, and of course, not quantifying this
plane). The problem with this solution is that istdrbs the optimization because more messages are
generated with this additional plane.

A new argument for CD++ was implemented in ordeenbance this behavior and to allow quantization
analysis without over heading the message genarafibh an additional plane.

This argument indicates CD++ that a discrete adwvaime is in use and when a cell has no external
events for a time t and is not influenced by angrgyvan external event will be generated with the
indicated delay with the same effect of the adddloplane but without over heading the messages
generated and not disturbing the performance amfitguanalysis of the model and quantization. This
argument it automatically generates “X” messagegtefnal messages) for the cell without events.

This is the reason because when comparing nonigedrand quantized simulations, the total number of
messages are not reduced so significantly as ttpribmessages, which are reduced as much as desired
with the quantum value.

Of course, when using Q-DEVS mechanism, this ifediht because the quantum is not on the CD++
simulation, it is on the implemented function flletmodel and the next scheduled time for the cell
manages the simulation (so this problem is notgm@sThat's the reason because Q-DEVS mechanism
reduces the total number of messages as much astihg messages, because the simulation is héld un
the next scheduled time is achieved and in betweenternal or external events are generated.

10 Appendix — Tools & Functions

The output files and results are too big to be madawith an standard editor. Several tools where
developed to analyze the results of the quantizedlations.

10.1  How to create complex functions in CD++

To make a new function available to use on the mbige(.ma) its necessary to do the following
steps.

1) Write the function in C++,
2) Copy this function into the Real Functions souitze(fealfunc.cpp). Replace the type of the
arguments by the CD++ types. For example, “doubyp& have to be replaced by “Real” type.

Example:
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3)

4)

5)

6)

7

8)

Real MyFunc(const Real &r1, const Real &r2)

#include <math.h>
#include <stdio.h>

double var;
var=rl.value()*r2.value() — 450.5;

return Real(var);

}

Add the prototype of the function in the Real Fiowes header file (realfunc.h).

Example:
Real MyFunc( const Real &rl1, const Real &r2 );

Overload the operator( ) of the Z class for thaditire of the function with the correct kind
(unary, binary, etc.) on the same header file {uealh).

Example:

template <class T, class Z>

struct r_MyFunc : public binary_function< T, T, Z>

{
Z operator()(const T& t1, const T& t2) const
if (EvalDebug().Active())
EvalDebug().Stream() << " (myfunc) ";
return MyFunc(t1,t2);
}
string type(){ return "MYFUNC";}
h

Create the type of the function r_MyFunc on thes&eader file (realfunc.h).

Example:
typedef r_MyFunc< Real, Real > REAL_MYFUNC;

Define the respective operator for the class toagarthe type value for the new function on the

synnode.h header file.

Example:
typedef BinaryOpNode< REAL_MYFUNC, RealType, Regi€ > FuncMyFunc ;

Add the name and type of the new function on tlcéiahary of parser method (parser.cpp
source file).

Example:
dict[ "myfunc" ] = ValuePair( BINARY_FUNC, new FeMyFunc() ) ;

Compile the project.

After this, the new function is available to usenfrthe model.

Example:
rule : { Myfunc(cellpos(0)*1000+cellpos(1)*10+ if¢1,0) > 0, 1.0, 0.0) } 5 {t}

10.2

The program ERRORQ accept a DRAWLOG output and rgées a new output (on standard output —
must be redirected to a file--) with six column§ieIDRAWLOG output must be generated with the lines

Error calculation

and times titles (no arguments —f or —e). Other,wegymparison is not possible, because a diffestfaet
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on each file can occur. Only argument —e can b&ulideecause the timeline is needed to compare the
outputs.
The generated columns are:
0) Counter of times simulations.
1) Time of the block-simulation in comparison
2) Relative error: (1-s/q)/n = Error introduced on thdicated time. Not summarized (only the
error generated on this time).
3) Accumulated relative error: sum[(1-s/q)]/n= The saas 2 but accumulated until current
time.
4) Absolute error: (s-q)/n= The same as 2 but withfferént formula. Not summarized (only
the error generated on this time).
5) Accumulated Absolute error: sum[s-q]/n= The samé bat accumulated until current time.

Kind of calculations
Columns showed
Column 0
Line Counter
Column 1
Simulation Time
Column 2
Relative error: (1-s/q) / n £ (1-s/q)/n (for 0<=i <=n = number of cells)
5 = Value of cell i on the output without quantum.
g = Value of cell i on the output with quantum.
n = number of cells
This value is set to 0 after each block-time.
Column 3
(is the same as 2 but accumulated -- AccumulatéatiRe error--)
sum[(1-s/q)l/n = [2 (1-s/g)];/n (for O<=i <=n = number of cells, O<=j<=curreime)
s = Value of cell i on the output without quantum.
g = Value of cell i on the output with quantum.
n = number of cells
Column 4
Absolute error:  (s-g) / n £ (5-qg;)/n (for 0<=i <=n = number of cells)
s = Value of cell i on the output without quantum.
g = Value of cell i on the output with quantum.
n = number of cells
This value is set to 0 after each block-time.

Column 5
(is the same as 4 but accumulated --Accumulateolateserror --)
sum[(s-q)}/n =2 [X (s-ap)]j/n (for 0<=i <=n = number of cells, O<=j<=curreithe)
5 = Value of cell i on the output without quantum.
g = Value of cell i on the output with quantum.
n = number of cells
When the error is accumulated, means the erromagiatied until time indicated in column 1.
Program arguments
The program ERRORQ receives two arguments:

1) The name of the original draw output file (origima¢ans without quantum)
2) The name of the draw output file obtained with guam
Both files must be generated with DrawLog withobie toption —f, because the time is needed to
synchronize the files and calculate the error.
Example
errorq outputl.drw outputgqg.drw

This will show you:

Archivo original: sing.drw quantificado:conq.drw
Dimension detectada del modelo: 5 x 5
Descripcion de Columnas
0) Contador de blogues comparados
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1) Tiempo de simulaicon del bloque en comparaci on
2) (1-s/g)/n= Error '[' introducido en el bloqu e time. Sin
acumular.
3) sum[(1-s/q)]/n= Error /' acumulado hasta ti me.
4) (s-q)/n= Error '-' introducido en el blogue time. Sin
acumular.
5) sum[s-q]/n= Error '-' acumulado hasta el blo que time.
0,1,2,3,4,5
t,time,(1-s/q)/25,sum[(1-s/q)]/25,(s-q)/25,sum[(s-q )1/25

0,00:00:00:000,0,0,0,0

1,00:00:00:230,0,0,0,0

2,00:00:00:325,0,0,0,0
3,00:00:00:355,0.00289157,0.00289157,0.24,0.24
4,00:00:00:595,0.0446277,0.0475192,0.459642,0.69964 2
5,00:00:00:680,0.0580914,0.105611,0.868588,1.56823
6,00:00:00:710,0.056741,0.162352,0.981349,2.54958
7,00:00:00:945,0.115058,0.27741,3.8915,6.44108
8,00:00:00:995,0.0714215,0.348831,1.33647,7.77755
9,00:00:01:030,0.0944933,0.443325,1.65318,9.43073
10,00:00:01:060,0.105529,0.548853,2.00511,11.4358
11,00:00:01:095,0.161452,0.710305,2.69788,14.1337

if you do (for example, in MSWindows):
errorq outputl.drw outputqqg.drw > error.csv
This will generate a comma separated value.

10.3 Message accounting

The program CONTART accept a simu LOG and gives tfm number of messages used on that
simulation.
Program arguments
The program CONTART receives one or two argumetgpénding of the use)
1) The name of the SIMU LOG file
2) <optional> The Time until you want to count message
3) <optional> “d” to get the number of messages orheizxce.

Examplel
contart output.log
This will show:

Archivo a contar mensajes: output.log

Cantidad de mensajes en output.log hasta 00:02:00:0 00(EOF) -> 264878
#*=72290

#X=48000

#Y=24290

#D=120294

#1=4

This means that in the log output.log, until EOEd#&use the title “hasta 00:02:00:000(EOF) mearts tha
end of file was reached) there are a total of 2848@&ssages and this is the detail:

72290 messages of type “*”

48000 messages of type “X”

24290 messages of type “Y”

120294 messages of type “D”

4 messages of type “I”

If you use the second argument, the program wilintanessages until the indicated time is reached or
EOF (the first that occurs).
Example2
With the same log as Examplel, we can do:
contart output.log 00:01:10:250
And this will show:

Archivo a contar mensajes: output.log

Hasta: 00:01:10:250

Cantidad de mensajes en output.log hasta 00:01:10:2 50 -> 155011
#*=42301

#X=28100

#Y=14201
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#D=70405
#1=4

This means that in the log output.log, until 001250 simulation time (because the second pasmet
is in use “hasta 00:01:10:250") there are a totdl55011 messages. If you use, for this example,

contart output.log 00:03:00:000
You will get the same results as in Examplel, bseadOF will be reached before the 3 minutes
indicated on the"™ parameter, and you will see the EOF title as neple 1.
This is useful when you logs comparison of simoladi ended at different simulation-times is needed,
which is common when quantifying.
Example3

With the same log as Examplel, we can do:

contart output.log d
This will show:

Archivo a contar mensajes: output.log
Time, Tot, *, X, Y, D, |
00:00:00:000,1,0,0,0,0,1
00:00:00:005,105,1,0,0,52,52
00:00:00:010,287,29,50,26,130,52
00:00:00:015,469,57,100,52,208,52
00:00:00:020,651,85,150,78,286,52
00:00:00:025,833,113,200,104,364,52
00:00:00:030,1015,141,250,130,442,52
00:00:00:035,1197,169,300,156,520,52
00:00:00:040,1379,197,350,182,598,52
00:00:00:045,1561,225,400,208,676,52
00:00:00:050,1743,253,450,234,754,52
... etc.

Cantidad de mensajes en output.log hasta 00:01:10:2 50 -> 155011
#*=672000

#X=1200000

#Y=624000

#D=1872052

#1=52

10.4  Stamp printer
Stamp is a program that shows system date and Nmarguments.
e.g.:
stamp
will produce
yyyy-mm-dd hh:mm:ss
with the current date and time in that format.

10.5 Cell Extractor
The program EXTRAER accept a DRAWLOG output anddpces a new output (on standard output —
must be redirected to a file--) with the valueshaf indicated cell.

Program arguments
The program EXTRAER receives three arguments:

1) The name of the draw output file
2) The cell x position
3) The cell y position
Example
extraer outputl.drw 2 1
This will show you the time and values for the ogly of the outputl.drw DRWLOG output.
extraer outputl.drw 2 1 > x21.csv

This will generate a comma separated value.
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10.6 Massive simulations

The program RUNSIMUS accept a file with a list efagtum values to consider for the simulations. This
program will automatically run all the tools neca$ss for the analysis of the quantum.

Programs/Tools used
0) CD++ Simulation.
1) Drawlog
2) ContarT (To get the number of messages from thalation).
3) Extraer 0 0 (To get the values of the cell 0,0)
4) ErrorQ (Error calculation of the simulation comphreith the simulation without quantum)
5) Stamp (To get the system time stamp at the begirenil at the end of the simu)

Program arguments
The program RunSimus receives between three améfguments:

1) The path/file name of the ASCII file with all theantum arguments type and values to be used.
2) Arguments to be used for the simulation
3) Arguments to be used for drawlog
4) Starting name for the output files to be generated
5) Indicator to process or not the initial simulatfon the comparison base.
Examples
newrunsimus parquantums.txt "-mcorazon.ma -t00&000 -c00:00:00:005 -s -d0.0000001 " "-
mcorazon.ma -ccorazon -wl2 -p5 " cora

Example of a quantum values file
parquantums.txt content:

%sin quantum

%quantum standard

-q1.0

-q8.0

-q20.0

%quantum standard dinamico 1
-q1.0 -y0.05

-91.0 -y0.5

-q1.0 -y0.9

-08.0 -y0.05

-08.0 -y0.5

-08.0 -y0.9

-020.0 -y0.05

-q20.0 -y0.5

-q20.0 -y0.9

%quantum standard dinamico 2
-9q1.0 -Y0.05

-q1.0-Y0.5

-q1.0-Y0.9

-08.0 -Y0.05

-08.0-Y0.5

-08.0-Y0.9

-g20.0 -Y0.05

-020.0 -Y0.5

-020.0 -Y0.9

%quantum histeresis

-Q1.0

-Q8.0

-Q20.0

%quantum histeresis dinamico 1
-Q1.0 -y0.05

-Q1.0-y0.5

-Q1.0-y0.9

-Q8.0 -y0.05

-Q8.0 -y0.5

-Q8.0 -y0.9

-Q20.0 -y0.05

-Q20.0 -y0.5

-Q20.0 -y0.9

%quantum histeresis dinamico 2
-Q1.0-Y0.05
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-Q1.0-Y05
-Q1.0-Y0.9
-Q8.0 -Y0.05
-Q8.0-Y0.5
-Q8.0-Y0.9
-Q20.0 -Y0.05
-Q20.0 -Y0.5
-Q20.0 -Y0.9

This example runs the simulations and tools for tak quantum types and values indicated in
parquantums.txt file.

Outputs to obtain
The outputs files obtained in this example arénefform:
cora_XXXXX.txt for the standard output generateutiie tools.
cora_XXXXX.log for the log file of the simulatior{this file is automatically deleted once the
simulation and tools running ends)
cora_XXXXX.drw for the drawlog output file.
cora_XXXXX_#.txt for the message counter resume.
cora_XXXXX_x00.csv for the 0 0 cell value countesume.
cora_XXXXX_e.csv error comparison of the simulatio

Where XXXXX is each of the quantum type and valpasameters indicated on parquantums.txt file.

e.g.:
cora_-g1.0 -y0.05.txt is a valid output name.

Considerations
The —Q and -Y arguments are replaced by +Q andesjgectively in order to keep uniqueness
file names of the output files (because some CGa$no case sensitive file naming)

10.7  Massive comparisons

The program CMPSIMUS receives a file with a listpfantum values used on the simulations and
generates a unique file with all the compared \&foe each quantum type and value indicated.

Program arguments
The program RunSimus receives two arguments:
1) The path/file name of the ASCII file with all th@@ntum arguments type and values used during
the simulation.
2) Starting name for the output file to be generated

Examples
newcmpsimus parguantums.txt comp.
This will generate a comma separated file as fatow

TipoQuantum ValorQuantum TipoDinamico ValorDinamico Par Inicio Fin #MsgsTOT #MsgsY ErrAbs  ErrRel

q 1 -ql.0 2003-07-09 18:19:49 2003-07-09 18:22:33 1628529 6075 7674.24 337.478
q 8 -08.0 2003-07-09 18:24:12 2003-07-09 18:26:55 1623579 1125 69355.2 3020.86
q 20 '-q20.0 2003-07-09 18:28:28 2003-07-09 18:31:10 1622929 475 196829 7879.13
q 1.0_ y 0.05 '-q1.0_-y0.05 2003-07-09 18:32:43 2003-07-09 18:35:27 1628829 6375 7164.11 308.143
q 1.0_ y 0.5 '-q1.0_-y0.5 2003-07-09 18:37:00 2003-07-09 18:39:44 1631429 8975 3828.7 157.925
q 1.0_ y 0.9 '-q1.0_-y0.9 2003-07-09 18:41:17 2003-07-09 18:44:02 1648079 25625 777.12 28.5052
q 1.0_+Y0.05 -q1.0_+Y0.05 2003-07-09 19:11:15 2003-07-09 19:13:59 1628579 6125 8205.94 361.65
q 1.0_+Y0.5 -ql.0_+Y0.5 2003-07-09 19:15:33 2003-07-09 19:18:17 1628629 6175 11627.6 518.544

10.8  Graphical Cell drawer

The program GRAFCELL accepts a DRAWLOG output anows a graphic output on the screen with
all the cells and the function graphic for each ona Grid.
Program arguments
The program GRAFCELL receives between five and s@rguments (depending on the use)
(On the next description, x means the values fedges and y the values for y edges of the plarghgra
1) The name of the DRAWLOG output file.
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2) The minimum value for x (most times is 0 —cero—heseaof the starting time of a simulation is
cero).

3) The minimum value for y. This is the minimum vathat a cell can reach on the simulation.

4) The maximum value for x. This is the maximum timé tbe simulation, converted to
milliseconds, but however, not all simulation tins@e showed on the drawlog, so you will need
to adjust this parameter with the correct scalinefgrid.

5) The maximum value for y. This is the maximum vatu&t a cell can reach on the simulation.

6) <Optional> -t With “-t" argument, GrafCell will shothe current time of the simulation when
drawing. The time will be converted to millisecormsd divided by the default cell delay, but
however, not all times simulations are showed ocamttrg, so a better adjustment will be
necessary.

If the drawlog file does not include the titles amidnes, a counter will be showed.
WARNING: With this option, the drawing can be VERBL.OW, depending on the model size.
7) <Optional> cellx celly With “x y” argument, GrafGelill show only the cell “cellx, celly”.
NOTE
Arguments 2, 3, 4 and 5 are only to adjust thdesofthe grid. You can try different ones to
have a nicer view.
Example
GrafCell output.drw 0 -16.6 35000 94.3

This will show the graphics on a new window scre@nafCell will automatically detect the
number of cells

GrafCell output.drw 0 -16.6 35000 94.3 30

This will show only the graphic of the cell 3 0.

RESTRICTIONS

GrafCell will work properly only with drawlog outpsiof one slide (parameter —f or —e needed).
Suggestions

To graph an output of a simulati@rth quantum, is better to use a DRAWLOG output generated with
f or —e option, because —f or —e option showswstpnly for the necessary plane to show..

The execution will generate a graphical cell spasdollows (it will show as many cells as the model
has).

N-CD++ GrafCell

N\ N\
Ny Ny Ny \\ N
N . ~\ “\ \\\
S . \. . N\
i
I
N\ N\ N\ N
NS | \\ NS

Heart GafCeII example with 5x5 cells 7 Wateshed GrafCell example with 30x36ells
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